In situ preparation and properties of phthalonitrile resin/hexagonal boron nitride composites

2020 ◽  
Vol 32 (9) ◽  
pp. 1010-1018
Author(s):  
Xinggang Chen ◽  
Yafeng Wang ◽  
Zhen Chen ◽  
Lifang Zhang ◽  
Xiaoming Sang ◽  
...  

Phthalonitrile resin/exfoliated hexagonal boron nitride ( h-BN) composites with high thermal conductivity were fabricated using a novel approach. The route included two steps, micro- h-BN was coated and dispersed by phthalonitrile monomers via the function of heterogeneous nucleation, and then micro- h-BN was exfoliated by heat release during the phthalonitrile curing process. The composites achieved a high thermal conductivity of 0.736W (m·K)−1 containing 20 wt% micro- h-BN, which is 3.17 times higher than that of pure phthalonitrile resin at 0.232W (m·K)−1. Compared to traditional routes, the novel preparation approach requires less BN fillers when improving the same thermal conductivity. Importantly, other thermosetting polymers can also encapsulate BN through this strategy, which paves a new way for preparing thermally conductive thermosetting polymer–matrix composites.

2019 ◽  
Vol 2019 (NOR) ◽  
pp. 000001-00005
Author(s):  
Ya Liu ◽  
Nan Wang ◽  
Lilei Ye ◽  
Abdelhafid Zehri ◽  
Andreas Nylander ◽  
...  

Abstract Thermally conductive materials with electrically insulating properties have been extensively investigated for thermal management of electronic devices. The combined properties of high thermal conductivity, structural stability, corrosion resistance and electric resistivity make hexagonal boron nitride (h-BN) a promising candidate for this purpose. Theoretical studies have revealed that h-BN has a high in-plane thermal conductivity up to 400 - 800 W m−1 K−1 at room temperature. However, it is still a big challenge to achieve high thermally conductive h-BN thick films that are commercially feasible due to its poor mechanical properties. On the other hand, many polymers exhibit advantages for flexibility. Thus, combining the merits of polymer and the high thermal conductivity of h-BN particles is considered as a promising solution for this issue. In this work, orientated PVP/h-BN films were prepared by electrospinning and a subsequent mechanical pressing process. With the optimized h-BN loading, a PVP/h-BN composite film with up to 22 W m−1 K−1 and 0.485 W m−1 K−1 for in-plane and through-plane thermal conductivity can be achieved, respectively. We believe this work can help accelerate the development of h-BN for thermal management applications.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


2020 ◽  
Vol 4 (3) ◽  
pp. 116
Author(s):  
Maryam Khalaj ◽  
Sanaz Zarabi Golkhatmi ◽  
Sayed Ali Ahmad Alem ◽  
Kahila Baghchesaraee ◽  
Mahdi Hasanzadeh Azar ◽  
...  

Ever-increasing significance of composite materials with high thermal conductivity, low thermal expansion coefficient and high optical bandgap over the last decade, have proved their indispensable roles in a wide range of applications. Hexagonal boron nitride (h-BN), a layered material having a high thermal conductivity along the planes and the band gap of 5.9 eV, has always been a promising candidate to provide superior heat transfer with minimal phonon scattering through the system. Hence, extensive researches have been devoted to improving the thermal conductivity of different matrices by using h-BN fillers. Apart from that, lubrication property of h-BN has also been extensively researched, demonstrating the effectivity of this layered structure in reduction of friction coefficient, increasing wear resistance and cost-effectivity of the process. Herein, an in-depth discussion of thermal and tribological properties of the reinforced composite by h-BN will be provided, focusing on the recent progress and future trends.


2019 ◽  
Vol 3 (11) ◽  
pp. 2455-2462 ◽  
Author(s):  
Si-Wei Xiong ◽  
Pan Zhang ◽  
Yu Xia ◽  
Pei-Gen Fu ◽  
Jing-Gang Gai

We developed a thermally conductive and antimicrobial QACs@h-BN/LLDPE composites for thermal management of medically electronic devices, it was approximately 100% against both E. coli and S. aureus and its thermal conductivity can reach 1.115 W m−1 K−1.


2019 ◽  
Vol 163 ◽  
pp. 723-729 ◽  
Author(s):  
Haeun Shin ◽  
Seokhoon Ahn ◽  
Doohun Kim ◽  
Jong Kuk Lim ◽  
Chae Bin Kim ◽  
...  

2018 ◽  
Vol 10 (40) ◽  
pp. 34625-34633 ◽  
Author(s):  
O. Hwan Kwon ◽  
Taeyong Ha ◽  
Dong-Gyun Kim ◽  
Byoung Gak Kim ◽  
Yong Seok Kim ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1051 ◽  
Author(s):  
Xiu Wang ◽  
Zhihuai Yu ◽  
Liang Jiao ◽  
Huiyang Bian ◽  
Weisheng Yang ◽  
...  

Hexagonal boron nitride (h-BN)-based heat-spreading materials have drawn considerable attention in electronic diaphragm and packaging fields because of their high thermal conductivity and desired electrical insulation properties. However, the traditional approach to fabricate thermally conductive composites usually suffers from low thermal conductivity, and cannot meet the requirement of thermal management. In this work, novel h-BN/cellulose-nano fiber (CNF) composite films with excellent thermal conductivity in through plane and electrical insulation properties are fabricated via an innovative process, i.e., the perfusion of h-BN into porous three dimensional (3D) CNF aerogel skeleton to form the h-BN thermally conductive pathways by filling the CNF aerogel voids. When at an h-BN loading of 9.51 vol %, the thermal conductivity of h-BN/CNF aerogel perfusion composite film is 1.488 W·m−1·K−1 at through plane, an increase by 260.3%. The volume resistivity is 3.83 × 1014 Ω·cm, superior to that of synthetic polymer materials (about 109~1013 Ω·cm). Therefore, the resulting h-BN/CNF film is very promising to replace the traditional synthetic polymer materials for a broad spectrum of applications, including the field of electronics.


RSC Advances ◽  
2016 ◽  
Vol 6 (39) ◽  
pp. 33036-33042 ◽  
Author(s):  
Shoji Nagaoka ◽  
Takuma Jodai ◽  
Yoshihiro Kameyama ◽  
Maki Horikawa ◽  
Tomohiro Shirosaki ◽  
...  

Formation of a thermal conductive network in resin sheet hybridized cellulose/BN core–shell microbeads.


Sign in / Sign up

Export Citation Format

Share Document