Effect of waterborne epoxy resin sizing on the surface and properties of high‐strength‐high‐modulus polyimide fibers

2021 ◽  
pp. 51475
Author(s):  
Li Zhu ◽  
Mengying Zhang ◽  
Jing Sheng ◽  
Hongqing Niu ◽  
Dezhen Wu
2021 ◽  
Vol 274 ◽  
pp. 122059
Author(s):  
Fuqiang Liu ◽  
Mulian Zheng ◽  
Xianpeng Fan ◽  
Hongyin Li ◽  
Fei Wang ◽  
...  

2021 ◽  
Vol 298 ◽  
pp. 123839
Author(s):  
Qiang Xia ◽  
Jinbao Wen ◽  
Xiusheng Tang ◽  
Yeran Zhu ◽  
Zhifeng Xu ◽  
...  

2018 ◽  
Vol 136 (8) ◽  
pp. 47091 ◽  
Author(s):  
Sha He ◽  
Weiqu Liu ◽  
Maiping Yang ◽  
Chunhua Liu ◽  
Chi Jiang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chichun Hu ◽  
Rui Li ◽  
Jianying Zhao ◽  
Zhen Leng ◽  
Wanwei Lin

To preserve the existing asphalt pavement and extend its service life, various preventive maintenance methods, such as chip seal, slurry seal, fog seal, and microsurfacing, have been commonly applied. Sand fog seal is one of such maintenance methods, which is based on the application of bitumen emulsion and sand. Thus, its performance is largely dependent on the properties of the bitumen emulsion and sand. This study aims to develop an improved sand fog seal method by using waterborne epoxy resin as an emulsion modifier. To this end, both laboratory tests and field trials were conducted. In the laboratory, the wet track abrasion and British pendulum test were performed to determine the optimum sand size for the sand fog seal, and the rubbing test was carried out to evaluate the wearing resistance of the sealing material. In the field, pavement surface regularity before and after the sand fog seal application was measured using the 3 m straightedge method, and the surface macrotexture and skid resistance were evaluated with the sand patch method and British pendulum test, respectively. The laboratory test results indicated that the optimum sand size range is 0.45–0.9 mm, and the sand fog seal with waterborne epoxy resin showed good wearing resistance and skid resistance. The field test results verified that both the pavement texture and skid resistance were substantially improved after sand fog sealing.


2018 ◽  
Vol 55 (8) ◽  
pp. 618-629 ◽  
Author(s):  
Sha He ◽  
Weiqu Liu ◽  
Chunhua Liu ◽  
Chi Jiang ◽  
Maiping Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document