Histology and cytochemistry of human skin. II. The distribution of glycogen in the epidermis, hair follicles, sebaceous glands and eccrine sweat glands

1952 ◽  
Vol 114 (2) ◽  
pp. 231-247 ◽  
Author(s):  
William Montagna ◽  
Herman B. Chase ◽  
Walter C. Lobitz
1958 ◽  
Vol 6 (3) ◽  
pp. 201-207 ◽  
Author(s):  
RICHARD A. ELLIS ◽  
WILLIAM MONTAGNA

The localization of phosphorylase and amylo-1,6-glucosidase activity has been studied in surgical specimens of human skin from the palm, sole, axilla, external auditory meatus, and other representative regions of the body. With few exceptions these enzymes are found in cells which are known to contain glycogen normally. The epidermis shows some variability, but amylo-1,6-glucosidase is generally present in the stratum spinosum, while phosphorylase is found in both the stratum basale and the stratum spinosum. The relative amounts of the enzymes vary with the thickness of the epidermis and with the age of the donor. Growing hair follicles have abundant phosporylase and amylo-1,6-glucosidase in their outer root sheaths, while resting ones contain only phosphorylase. A short portion of the epidermal duct of the eccrine sweat glands has no enzymatic activity, but the remainder of the duct and the secretory portion of the gland is richer in phosphorylase than any other structure of the skin. The apocrine sweat glands have neither enzyme in their secretory coils, but the duct of these glands is rich in phosphorylase. Time sebaceous glands contain both enzymes, but phosphorylase is more concentrated in the peripheral cells of the gland. Neither the centers of the glands nor the sebum contain either enzyme.


2019 ◽  
Vol 50 (4) ◽  
pp. 335-342 ◽  
Author(s):  
Leilei Cao ◽  
Liyun Chen ◽  
Haihong Li ◽  
Zairong Wei ◽  
Sitian Xie ◽  
...  

1980 ◽  
Vol 268 (3) ◽  
pp. 257-260 ◽  
Author(s):  
Attila Galosi ◽  
Helmut Pullmann ◽  
Gerd Klaus Steigleder

1992 ◽  
Vol 133 (3) ◽  
pp. 467-NP ◽  
Author(s):  
R. Choudhry ◽  
M. B. Hodgins ◽  
T. H. Van der Kwast ◽  
A. O. Brinkmann ◽  
W. J. A. Boersma

ABSTRACT A mouse monoclonal antibody against the N-terminal region of human androgen receptor (AR) was used to identify receptors by immunoperoxidase staining in frozen serial sections of skin from scalp, face, limb and genitalia of men and women aged 30–80 years. AR staining was restricted to cell nuclei. In sebaceous glands, AR were identified in basal and differentiating sebocytes. The percentage of receptor-positive basal sebocyte nuclei in the temple/forehead region was greater in males (65%) than in females (29%). AR staining was restricted to the cells of dermal papillae in anagen and telogen hair follicles. The percentage of dermal papillae containing AR was greater in males (58%) than in females (20%). The number of positively stained dermal papillae was lowest in female scalp skin. In 163 hair follicles sectioned, AR were absent from germinative matrix, outer root sheath (including the bulge region), inner root sheath, hair shaft and hair bulb, and from the capillaries present in some large dermal papillae. AR were present in pilosebaceous duct keratinocytes, suggesting that androgens may influence pilosebaceous duct keratinization. AR were also identified in interfollicular epidermal keratinocytes and dermal fibroblasts although, in both cell types, intensity and frequency of staining were greatest in genital skin. AR were identified in luminal epithelial cells of apocrine glands in genital skin and in certain cells of the secretory coils of eccrine sweat glands in all body sites. This study indicates that androgens regulate sebaceous gland and hair growth by acting upon two different types of target cells, the epithelial sebocytes of sebaceous glands and the mesenchymal cells of the hair follicle dermal papilla. AR staining in either cell type was not influenced by age in adults. The distribution of AR in human skin is consistent with the diverse effects of androgens on the structure and function of skin and its appendages. Journal of Endocrinology (1992) 133, 467–475


1978 ◽  
Vol 79 (1) ◽  
pp. 29-39 ◽  
Author(s):  
J. B. HAY ◽  
M. B. HODGINS

The distribution of androgen metabolism in human skin was studied using tissues isolated either by direct dissection of axillary skin or by dissection of collagenase-digested forehead and axillary skin. All tissues (epidermis, sweat glands, sebaceous glands, hair follicles and dermis) were found to contain 17β-, 3β- and 3α-hydroxysteroid dehydrogenase (HSD) activities, 3β-hydroxysteroid dehydrogenase-Δ4–5 isomerase (Δ5-3β-HSD) activity and 5α-reductase activity. All tissues converted testosterone into 5α-dihydrotestosterone. In confirmation of previous histochemical studies, over 90% of the Δ5-3β-HSD of forehead skin was found in the sebaceous glands. In forehead skin, 40–66% of the 5α-reductase activity was in the sebaceous glands, while in axillary skin 50–70% was in the sweat glands, especially the apocrine glands. There was a more even distribution of 17β-HSD activity in skin tissues than histochemical studies have indicated previously. Knowledge of the distribution of these enzymes has helped in the understanding of the function of androgen metabolism in skin.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wang Wei ◽  
Qi Michu ◽  
Dong Wenjuan ◽  
Wen Jianrong ◽  
Han Zhibing ◽  
...  

Abstract To observe the histological changes in human skin within 32 days after death to explore its potential significance in forensic practice. The intact full-thickness skin and subcutaneous tissue from the sternum of eight corpses were placed in an environment of 4–6 °C for 4 h, 6 h, 12 h, 18 h, 24 h, 36 h, 48 h, 60 h, 72 h, 84 h, 96 h, 6 d, 8 d, 10 d, 12 d, 16 d, 20 d, 24 d, 28 d, and 32 d. Then, the whole layer of the skin was stained with haematoxylin & eosin. The histological morphology of the epidermis, dermis and appendages (sweat glands, hair follicles, and sebaceous glands) was observed under an light microscope. The epithelial nucleus condensed at 24 h after death, and cell lysis was exhausted after 20 days. The post-mortem changes in the dermis occurred later than that of the epidermis (72 h), but after epidermal changes started, the change was more rapid. At 16 d, the layers had become homogenized. The epidermis and dermis had completely separated 24 d after death. The changes in the sweat glands appeared earlier (24 h) and disappeared later (32 days); the sebaceous glands and hair follicles began to undergo degenerative changes at 96 h after death, and at approximately 20 d, only their contour remained. There were individual and structural differences in the post-mortem histological changes in the skin. At 4–6 °C ambient temperature, some structures of the human skin still exist for a long time after death, and these structures can be used to identify the source of the tissue; post-mortem histological changes in the skin occur at specific times, which can be used to help infer the time of death. A comprehensive observation of changes in the skin composition/structure is required to comprehensively analyse possible death times.


Nature ◽  
1968 ◽  
Vol 219 (5149) ◽  
pp. 84-85 ◽  
Author(s):  
R. I. C. SPEARMAN

Sign in / Sign up

Export Citation Format

Share Document