scholarly journals Suppression of cartilage matrix gene expression in upper zone chondrocytes of osteoarthritic cartilage

1997 ◽  
Vol 40 (3) ◽  
pp. 562-569 ◽  
Author(s):  
T. Aigner ◽  
S. I. Vornehm ◽  
G. Zeiler ◽  
J. Dudhia ◽  
K. von der Mark ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nobuho Tanaka ◽  
Hirotaka Tsuno ◽  
Satoru Ohashi ◽  
Mitsuyasu Iwasawa ◽  
Hiroshi Furukawa ◽  
...  

Abstract Background In osteoarthritis (OA), cartilage matrix is lost gradually despite enhanced matrix synthesis by chondrocytes. This paradox may be explained, at least partly, by reduced chondrocyte anabolism in degenerated area of OA cartilage. However, to date, it is not known why chondrocyte anabolism is suppressed in those areas. Methods Cartilage was obtained from control knees and end-stage OA knees in macroscopically preserved areas and degenerated areas, and gene expression was analyzed in respective regions of cartilage using laser capture microdissection and qPCR. For the cartilage protein analysis, cartilage was obtained from preserved areas and degenerated areas of OA knees in pairs, and proteins were extracted using urea buffer. Protein concentrations were determined by Luminex and compared between the areas. Cartilage explants prepared from preserved areas and degenerated areas of OA knees were cultured in the presence or absence of an AKT inhibitor, and the gene expression was evaluated by qPCR. Finally, the expression of SP1 was evaluated in OA and control cartilage, and the significance of Sp1 on the expression of IGF1R and IRS1 was investigated in experiments using primary cultured chondrocytes. Results Within OA cartilage, the expression of IGF-1, IGF-2, IGF1R and IRS1 was reduced in degenerated areas compared to preserved areas, while the expression of all six IGF-binding protein genes examined was enhanced in the former areas. Consistent results were obtained by a protein analysis. In explant culture, the inhibition of AKT signaling abrogated the abundant matrix gene expression in the preserved areas over the degenerated areas, indicating that suppressed matrix synthesis in degenerated areas may be ascribed, at least partly, to attenuated IGF signaling. Within OA cartilage, the expression of Sp1 was considerably reduced in severely degenerated areas compared to preserved areas, which correlated well with the expression of IGF1R and IRS1. In experiments using primary cultured chondrocytes, the expression of IGF1R and IRS1 was enhanced by the induction of Sp1 expression and reduced by the suppression of Sp1 expression. Conclusions The results of this study suggest that attenuated IGF signaling may be responsible, at least partly, for the reduced matrix synthesis in degenerated areas of OA cartilage.


2020 ◽  
Author(s):  
Nobuho Tanaka ◽  
Hirotaka Tsuno ◽  
Satoru Ohashi ◽  
Mitsuyasu Iwasawa ◽  
Hiroshi Furukawa ◽  
...  

Abstract Background: In osteoarthritis (OA), cartilage matrix is lost gradually despite enhanced matrix synthesis by chondrocytes. This paradox may be explained, at least partly, by reduced chondrocyte anabolism in degenerated area of OA cartilage. However, to date, it is not known why chondrocyte anabolism is suppressed in those areas.Methods: Cartilage was obtained from control knees and end-stage OA knees in macroscopically preserved areas and degenerated areas, and gene expression was analyzed in respective regions of cartilage using laser capture microdissection and qPCR. For the cartilage protein analysis, cartilage was obtained from preserved areas and degenerated areas of OA knees in pairs, and proteins were extracted using urea buffer. Protein concentrations were determined by Luminex and compared between the areas. Cartilage explants prepared from preserved areas and degenerated areas of OA knees were cultured in the presence or absence of an AKT inhibitor, and the gene expression was evaluated by qPCR. Finally, the expression of SP1 was evaluated in OA and control cartilage, and the significance of Sp1 on the expression of IGF1R and IRS1 was investigated in experiments using primary cultured chondrocytes.Results: Within OA cartilage, the expression of IGF-1, IGF-2, IGF1R and IRS1 was reduced in degenerated areas compared to preserved areas, while the expression of all six IGF-binding protein genes examined was enhanced in the former areas. Consistent results were obtained by a protein analysis. In explant culture, the inhibition of AKT signaling abrogated the abundant matrix gene expression in the preserved areas over the degenerated areas, indicating that suppressed matrix synthesis in degenerated areas may be ascribed, at least partly, to attenuated IGF signaling. Within OA cartilage, the expression of Sp1 was considerably reduced in degenerated areas compared to preserved areas, which correlated well with the expression of IGF1R and IRS1. In experiments using primary cultured chondrocytes, the expression of IGF1R and IRS1 was enhanced by the induction of Sp1 expression and reduced by the suppression of Sp1 expression.Conclusions: The results of this study suggest that attenuated IGF signaling may be responsible, at least partly, for the reduced matrix synthesis in degenerated areas of OA cartilage.


Cytokine ◽  
2008 ◽  
Vol 44 (3) ◽  
pp. 377-385 ◽  
Author(s):  
R.D. Müller ◽  
T. John ◽  
B. Kohl ◽  
A. Oberholzer ◽  
T. Gust ◽  
...  

2006 ◽  
Vol 14 ◽  
pp. S104-S105
Author(s):  
T. Imamura ◽  
C. Imamura ◽  
A. McAlinden ◽  
Y. Iwamoto ◽  
L.J. Sandell

Diabetes ◽  
1991 ◽  
Vol 40 (5) ◽  
pp. 605-611 ◽  
Author(s):  
P. Muona ◽  
J. Peltonen ◽  
S. Jaakkola ◽  
J. Uitto

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 151.2-152
Author(s):  
E. Pachera ◽  
G. Kania ◽  
A. Juengel ◽  
M. Calcagni ◽  
O. Distler

Background:Traditional preclinical approaches, such as two-dimensional cell culture and animal models, are often inadequate to mimic the pathophysiological features of complex diseases such as systemic sclerosis (SSc). Human specific targets, such as the recently described pro-fibrotic long non coding RNA (lncRNA) H19X1, are becoming increasingly relevant in preclinical research, creating the need of new strategies and tools in translational medicine. The employment of novel three-dimensional (3D) culture systems, where multiple cell types are included, is filling an important gap left by the traditional preclinical methods.Objectives:To develop an easy to produce 3D fibrotic skin microtissues model for translational proof of concept studies.Methods:Two thousand five hundred dermal fibroblasts isolated from skin of SSc patients were seeded in ultra-low attachment 96-well plates. Fibroblast were let to aggregate into spheres for 48h. Two thousand five hundred primary normal human keratinocytes were added to the culture and let to layer onto the fibroblast spheres for 72h. H19X silencing experiments were used as proof of concept studies. H19X silencing with antisense oligonucleotides or transfections with a scrambled control were performed in fibroblasts prior to the sphere formation for 24h. TGFβ (10 ng/ml) was added to microtissue to exacerbate the fibrotic phenotype. Haematoxylin eosin staining as well as immunohistochemistry staining for vimentin and cytokeratin 10 was performed. Skin microtissues were processed for RNA and protein isolation. Pro-collagen Iα1 and fibronectin were quantified in the supernatants with ELISA.Results:The microtissues presented a core of SSc fibroblast as revealed by vimentin staining and an external layer of keratinocytes as revealed by cytokeratin 10 staining, mimicking the human skin architecture. Gene expression analysis following TGFβ stimulation displayed induced expression of extracellular matrix gene COL1A1 (p=0.044) and the myofibroblast marker ACTA2 (p=0.018), indicating that the microtissues were able to develop a fibrotic response. Microtissues, where H19X was silenced, displayed reduced gene expression of COL1A1 and ACTA2 after TGFβ stimulation (COL1A1 p=0.007, ACTA2 p=0.045). Additionally, H19X silencing led to lower levels of αSMA protein expression (p=0.009) and pro-collagen1α1 secretion (p=0.039) in the supernatant of the microtissue cultures as revealed by Western Blot and ELISA, respectively. FN1 expression and fibronectin protein levels were not significantly reduced in the microtissues after H19X silencing.Conclusion:We were able to produce a 3D microtissue resembling skin architecture that can respond to fibrotic stimuli. Knockdown experiments of pro-fibrotic lncRNA H19X confirmed the potential of the model as screening platform for novel pro-fibrotic effectors. A future aim will be to optimize the model for high-throughput automated screening platforms.References:[1]Pachera, E., et al. (2020). “Long noncoding RNA H19X is a key mediator of TGF-β–driven fibrosis.” The Journal of Clinical Investigation 130(9): 4888-4905.Disclosure of Interests:Elena Pachera: None declared, Gabriela Kania: None declared, Astrid Juengel: None declared, Maurizio Calcagni Speakers bureau: Arthrex, Consultant of: Medartis, Arthrex, SilkBiomaterials, Grant/research support from: Medartis, Oliver Distler Speakers bureau: Actelion, Bayer, Boehringer Ingelheim, Medscape, Novartis, Roche, Consultant of: Abbvie, Actelion, Acceleron Pharma, Amgen, AnaMar, Arxx Therapeutics, Bayer, Baecon Discovery, Blade Therapeutics, Boehringer, CSL Behring, ChemomAb, Corpuspharma, Curzion Pharmaceuticals, Ergonex, Galapagos NV, GSK, Glenmark Pharmaceuticals, Inventiva, Italfarmaco, iQvia, -Kymera, Medac, Medscape, Mitsubishi Tanabe Pharma, MSD, Roche, Sanofi, UCB, Grant/research support from: Abbvie, Actelion, Bayer, Boehringer Ingelheim, Kymera Therapeutics, Mitsubishi Tanabe


Sign in / Sign up

Export Citation Format

Share Document