human articular chondrocytes
Recently Published Documents


TOTAL DOCUMENTS

580
(FIVE YEARS 49)

H-INDEX

72
(FIVE YEARS 5)

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2500
Author(s):  
Yi-Ting Chen ◽  
Chih-Chien Wang ◽  
Chia-Pi Cheng ◽  
Feng-Cheng Liu ◽  
Chian-Her Lee ◽  
...  

The inflammatory cytokine interleukin-26 (IL-26) is highly expressed in the serum and synovial fluid of patients with inflammatory arthritis. The effect of IL-26 on human articular chondrocytes (HACs) remains unclear. Obesity is associated with disability of patients with rheumatoid arthritis and disease activity in those with ankylosing spondylitis. The saturated free fatty acid palmitate with IL-1β can synergistically induce catabolic effects in HACs. The aim of this study was to evaluate the effects of IL-26 and palmitate in HACs. In this study, palmitate markedly synergizes the IL-26-induced proinflammatory effects and matrix protease, including COX-2, IL-6, and MMP-1, in HACs via the toll-like receptor 4 (TLR4)-ERK1/2-c-Jun signal transduction pathway. The synergistic catabolic effects of palmitate and IL-26 were attenuated by inhibitors of TLR4 (TAK242), ERK1/2 (U0126), or c-Jun (SP600125) in HACs and cartilage matrix. In addition, metformin, a potential inhibitor of TLR4, also decreased expression of COX-2 and IL-6 induced by co-incubation with IL-26 and palmitate. IL-26 and palmitate synergistically induced expression of inflammatory and catabolic mediators, resulting in articular cartilage matrix breakdown. The present study also revealed a possible mechanism and therapeutic targets against articular cartilage degradation by increased saturated fatty acids in patients with inflammatory arthritis.


Cartilage ◽  
2021 ◽  
pp. 194760352110219
Author(s):  
Mauricio N. Ferrao Blanco ◽  
Yvonne M. Bastiaansen-Jenniskens ◽  
Mark G. Chambers ◽  
Andrew A. Pitsillides ◽  
Roberto Narcisi ◽  
...  

Objective In osteoarthritis, chondrocytes tend to acquire a hypertrophic phenotype, which contributes to the modification of the extracellular matrix, resulting in permanent cartilage changes. In mouse chondrocytes, pro-inflammatory macrophages and pro-inflammatory cytokines have been shown to stimulate hypertrophy via the activation of the nuclear factor kappa B (NF-κB) pathway. Whether or not this also occurs in human chondrocytes remains unclear. We therefore aimed to investigate whether hypertrophy-like responses in human cartilage are driven mainly by intrinsic inflammatory signaling or shaped by specific macrophage populations. Design Human articular chondrocytes were cultured with pro-inflammatory cytokines or medium conditioned by defined macrophage subsets. Furthermore, the effect of inhibition of NF-κB-dependent gene expression was evaluated using the NF-κB inhibitor SC-514. Hypertrophy was assessed by measuring the transcription level of alkaline phosphatase ( ALPL), type X collagen ( COL10A1), Indian hedgehog ( IHH), and runt-related transcription factor 2 ( RUNX2). Results The expression of hypertrophic genes was not promoted in human chondrocytes by pro-inflammatory cytokines neither pro-inflammatory M(IFNγ + TNFα) macrophages. Inhibition of the NF-κB-dependent gene expression did not affect human articular chondrocyte hypertrophy. However, tissue repair M(IL4) macrophages induced hypertrophy by promoting the expression of COL10A1, RUNX2, and IHH. Conclusion Intrinsic inflammatory signaling activation is not involved in the hypertrophic shift observed in human articular chondrocytes cultured in vitro. However, tissue repair macrophages may contribute to the onset of this detrimental phenotype in human osteoarthritic cartilage, given the effect observed in our experimental models.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1051.1-1051
Author(s):  
M. Fernandez-Moreno ◽  
N. Larkins ◽  
A. Reynolds ◽  
T. Hermida Gómez ◽  
F. J. Blanco

Background:Disease modification is not yet possible for osteoarthritis (OA). Mitochondrial ROS and pro-inflammatory cytokines are involved in the pathogenesis of OA and are potential therapeutic targets. APPA, a combination of apocynin (AP) and paeonol (PA), has the potential capacity to modulate synthesis of pro-inflammatory stimuli.Objectives:To investigate the anti-inflammatory effect of APPA in human articular chondrocytes and cartilage.Methods:Tissue and chondrocytes from human OA cartilage were isolated. The effect of APPA on chondrocyte viability was analyzed using MTT. IL-1β 10 ng/mL and LPS 10 ng/mL were used as pro-inflammatory stimuli. ROS production was evaluated by flow cytometry using DCFH-DA and MitoSoxRed. The percentage of senescent cells was evaluated through the quantification of Fluorescein di-β-D-galactopyranoside (FDG) by flow cytometry. The effect of APPA on gene expression of pro-inflammatory cytokines (IL-8 and TNF-α) and enzymes degrading cartilage (MMP-13 and MMP-3) were analyzed in chondrocyte and cartilage by RT-PCR. Quantification of Toluidine Blue (TB) staining in cartilage was performed to evaluate proteoglycans content using software ImageJ/Fiji. Release of Glycosaminoglycan (GAGs) into the supernatant was quantified using BlyscanTM Glycosaminoglycan assay. Statistical analyses were performed with GraphPad Prism v6.Results:Chondrocytes, incubated in presence of APPA 10 µg/mL for 24 h had viability >85%, reduced cytoplasmic ROS (p=0.028) and mitochondrial anion superoxide production induced by LPS 10 ng/mL (p=0.057). Chondrocytes incubated in presence of APPA 10 µg/mL for 2 hours contained significantly fewer senescent cells (p=0.0079). APPA significantly reduced the gene expression induced by IL-1β 10 ng/mL in chondrocytes of IL-8, TNF-α, MMP-13 and MMP-3. Cartilage incubated with APPA 60 and 100 µg/mL for 48 h showed decreased the MMP-3 gene expression induced by IL-1β (p=0.021 and p<0.0001 respectively). Quantification of TB showed that APPA 60 and 100 µg/mL during 48h increased the proteoglycans in intermedial layer, which had been decreased through the incubation with IL-1β (p=0.0018 and p=0.018 respectively). Quantification of release GAGs into the supernatant decreased significantly when the cartilage explants were incubated for 48h in presence of APPA 100 µg/mL (p=0.028).Conclusion:APPA has a clear anti-inflammatory effect on human articular chondrocytes, and could reduce extracellular matrix degradation of cartilage. This could be mediated by the capacity to modulate ROS production and reduce senescence.Disclosure of Interests:Mercedes Fernandez-Moreno: None declared, Nicholas Larkins Shareholder of: I am a shareholder in AKL Research and Development Ltd, Alan Reynolds Shareholder of: I have share options in AKL Research and Development Ltd, Speakers bureau: I have not been a paid speaker for a pharma company - at least not since 2008 whichI think is outside the scope of this, Consultant of: The last time I was a paid consultant was in 2017 when I acted as a consultant for Avillion and Norgine, Employee of: I am also an employee of AKL Research and Development Ltd, Tamara Hermida Gómez: None declared, Francisco J. Blanco Speakers bureau: LillyPfizerSanofiGalapagos, Consultant of: LillyPfizerSanofiGalapagos, Grant/research support from: LillyMSDMerck SeronoPfizerPierre-FabraRocheSanofiServierUCBAbbvieAmgenBioibericaBristol MayerCelgeneCelltrionCellerixGrunenthalGebro PharmaAKL Research and Development Ltd


2021 ◽  
Vol 29 ◽  
pp. S358
Author(s):  
M. Fernandez-Moreno ◽  
N. Larkins ◽  
A. Reynolds ◽  
T. Hermida-Gomez ◽  
F.J. Blanco

2021 ◽  
Vol 166 ◽  
pp. 90-103
Author(s):  
John A. Collins ◽  
Maryna Kapustina ◽  
Jesalyn A. Bolduc ◽  
James F.W. Pike ◽  
Brian O. Diekman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document