Observer‐based trajectory control for directional drilling process

2021 ◽  
Author(s):  
Zhen Cai ◽  
Xuzhi Lai ◽  
Min Wu ◽  
Luefeng Chen ◽  
Chengda Lu
2011 ◽  
Vol 44 (1) ◽  
pp. 10836-10841 ◽  
Author(s):  
Neilkunal Panchal ◽  
Martin T. Bayliss ◽  
James F. Whidborne

TECHNOLOGOS ◽  
2020 ◽  
pp. 47-57
Author(s):  
Neroslov Alexey

In 1943, at the height of the Great Patriotic War, the new revolutionary drilling technique with high efficiency was used in Krasnokamsk oilfield of Molotov (Perm) Oblast for the first time in the world – the cluster turbodrilling method. The development of oil industry in Prikamye in the 1940s was associated with certain complications. The main deposits of the Krasnokasmk oilfield discovered before the war turned out to be located due to a number of reasons within the area of industrial and residential construction of the city of Krasnokamsk and under the Kama river and the Paltinskoye swamp close to the city. Conventional drilling methods could not be used for their development. The way out was to use the method of directional drilling that was little known at that moment. The development of the innovative technology in Krasnokamsk oilfield in 1942 was largely due to the involvement of the specialists of the Experimental Turbodrilling Bureau evacuated from Baku. Directional drilling which involved the deviation of the bottom hole (the ultimate lowest point of the well) from the wellhead (the initial uppermost location) by several hundred metres opened up broad opportunities for developing hard-to-recover oil deposits while significantly accelerating and ensuring cost savings of the drilling process. The directional drilling served as the basis for the development in Prikamye of an advanced technology of cluster drilling when several directional wells with different azimuths were drilled from a small well pad. In 1943–1944, cluster drilling was tested and successfully used in Krasnokamsk oilfield. The cluster drilling comprised an entire range of innovative solutions including the movement of assembled drilling rigs without dismantling power equipment. Also, it resulted in the reduction of total labour costs, scope of construction and assembly works, costs of building oilfield roads, power lines and pipelines, and transportation costs. People’s Commissariat of Oil Industry of the USSR initiated a large-scale rollout of the advanced method of cluster drilling in the largest oil-producing regions of the Soviet Union – Azerbaijan and the North Caucasus, and the area of the “second Baku” – Bashkiria, Tatary, and Kuybyshev oblast. The transition to the advanced and cost-saving technology of cluster drilling laid the foundation for the technical and economic revolution of the world drilling practices.


2020 ◽  
Vol 165 ◽  
pp. 03036
Author(s):  
Lian Jie

In order to ensure safe and efficient mining and improve the efficiency of drilling construction, intelligent drilling technology has been studied in China. This technology is another development on the basis of automation. In addition to the automatic execution of the construction process, it also has the characteristics of intelligent perception, intelligent decision-making and intelligent correction. This technology requires engineering parameter measuring equipment to obtain the engineering parameters such as torque, WOB, inner and outer annulus pressure, rotation speed, vibration, temperature, etc. near the drill bit at the bottom of the hole in real time, so as to realize the real-time monitoring of the drilling process parameters at the bottom of the hole and the stress state of the drilling tool in the process of directional drilling, and increase the effective extraction distance of the drilling hole.


2021 ◽  
Author(s):  
John Martin Clegg

Abstract Increasingly complex wells and longer laterals present new challenges for wellbore placement and wellbore quality. There is a growing understanding of the impact of well placement and wellbore quality on the overall value of the well and on the economics of completions and production. This paper looks at how requirements have evolved and will evolve beyond simply "getting to TD" as quickly as possible and how emerging technologies can help. There is already an undercurrent of opinion that completions and production are sometimes compromised to maximize rate of penetration, but with some controversy about the exact value and how easy it is to attribute cause. This paper reviews how directional drilling practice has evolved over 100 years, and how the wellbore quality that results from the directional drilling process can be a driver for the overall value of the well. Specifically, it draws on a number of key references to examine how tortuosity doesn't just have an influence on drilling but also how it can adversely impact completions, reliability of production equipment and even production rates. The paper proposes that we consider the whole-life value of the well as a key performance indicator as we drill. It emphasises that we must cease to focus solely on rate of penetration and the depth-time curve. The paper shows, with examples, how modern directional drilling systems can address tortuosity and improve wellbore quality. It presents an unbiased view of the industry from an independent viewpoint, exploring how directional drilling has been partially automated over the years and examining the state of the art in current automated directional drilling systems. It proposes the need for a modern directional drilling system not just in terms of drilling parameters but also in terms of automation of geometric and, ultimately, geologic aspects of directional drilling. The paper is intended to break down the silos that can exist between drilling, completions and production functions, and to help the industry to think about the long-term consequences of performance when specifying future directional drilling equipment.


2017 ◽  
Author(s):  
Ekaterina Wiktorski ◽  
Artem Kuznetcov ◽  
Dan Sui

Author(s):  
Madhu Vadali ◽  
Yuzhen Xue ◽  
Xingyong Song ◽  
Jason Dykstra

This paper presents a detailed mathematical model of a rotary steerable drilling system (RSS) that adopts hydro-electromechanical devices to generate bending torque in adjusting the toolface (TF). Key requirements of RSS are to adjust the TF promptly to track the TF command, to maintain the TF in presence of the external disturbances, and to do so during the drilling process. Accordingly, a controller with a fast response time and effective disturbance rejection capability is desired for the RSS. The complexity and non-linearities of the RSS creates additional challenges to the controller design. This paper describes a simple and effective controller scheme that is designed based on the analysis of the system’s dynamics model. By decoupling the disturbances, physical state feedback, and non-linearities, the RSS can be controlled by using a simple and effective proportional-integral-derivative (PID) controller with the desired performance. The simulation results show that the proposed controller is effective against the disturbance and the variations of the parameters.


Sign in / Sign up

Export Citation Format

Share Document