Adaptive finite‐time cooperative platoon control of connected vehicles under actuator saturation

2021 ◽  
Author(s):  
Zhenyu Gao ◽  
Yi Zhang ◽  
Qingmeng Liu
2020 ◽  
Vol 29 (13) ◽  
pp. 2050212
Author(s):  
Zhi Gao ◽  
Zhihao Zhu ◽  
Yu Guo

For multi-spacecraft with actuator saturation, inertia uncertainties and external disturbances, a distributed finite-time coordinated attitude tracking control problem for the spacecraft with the communication topology containing fewer information paths is investigated. Aiming at reducing the communication path, a class of distributed finite-time state observers is designed. To speed up the convergence rate of the multiple spacecraft system, a fast nonsingular terminal sliding mode function is proposed. Moreover, an adaptive control term is proposed to suppress the impact of the external state-dependent disturbances and unknown time-varying inertia uncertainties. Further considering the actuator saturation owing to its physical limitations, a saturation function is designed. With the distributed finite-time observers, the fast nonsingular terminal sliding mode function, the adaptive update law and the saturation function, a distributed finite-time coordinated attitude tracking saturation controller is designed. Using the proposed controller, the follower can synchronize with the common leader with time-varying trajectory in finite time. Simulation results demonstrate the effectiveness of the designed controller.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Junjie Zhao ◽  
Jing Wang ◽  
Bo Li

We deal with the finite-time control problem for discrete-time Markov jump systems subject to saturating actuators. A finite-state Markovian process is given to govern the transition of the jumping parameters. A controller designed for unconstrained systems combined with a dynamic antiwindup compensator is given to guarantee that the resulting system is mean-square locally asymptotically finite-time stabilizable. The proposed conditions allow us to find dynamic anti-windup compensator which stabilize the closed-loop systems in the finite-time sense. All these conditions can be expressed in the form of linear matrix inequalities and therefore are numerically tractable, as shown in the example included in the paper.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Guoliang Wang ◽  
Bo Feng

The finite-time control problem of discrete-time delayed Markovian jump systems with partially delayed actuator saturation is considered by a mode-dependent parameter approach. Different from the traditionally saturated actuators, a kind of saturated actuator being partially delay-dependent is firstly proposed, where both nondelay and delay states are included and occur asynchronously. Moreover, the probability distributions of such two terms are described by the Bernoulli variable and are taken into account in the controller design. Sufficient conditions for the existence of the desired controller are presented with LMIs. Finally, a numerical example is provided to show the effectiveness and superiority of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document