scholarly journals Intensified impact of the central Pacific warming on the monsoon trough over the western North Pacific since 1984

2018 ◽  
Vol 19 (7) ◽  
pp. e828
Author(s):  
Hongjie Zhang ◽  
Liang Wu ◽  
Ronghui Huang ◽  
Jau-Ming Chen
2015 ◽  
Vol 28 (23) ◽  
pp. 9332-9349 ◽  
Author(s):  
Liang Wu ◽  
Zhiping Wen ◽  
Renguang Wu

Abstract Part I of this study examined the modulation of the monsoon trough (MT) on tropical depression (TD)-type–mixed Rossby–gravity (MRG) and equatorial Rossby (ER) waves over the western North Pacific based on observations. This part investigates the interaction of these waves with the MT through a diagnostics of energy conversion that separates the effect of the MT on TD–MRG and ER waves. It is found that the barotropic conversion associated with the MT is the most important mechanism for the growth of eddy energy in both TD–MRG and ER waves. The large rotational flows help to maintain the rapid growth and tilted horizontal structure of the lower-tropospheric waves through a positive feedback between the wave growth and horizontal structure. The baroclinic conversion process associated with the MT contributes a smaller part for TD–MRG waves, but is of importance comparable to barotropic conversion for ER waves as it can produce the tilted vertical structure. The growth rates of the waves are much larger during strong MT years than during weak MT years. Numerical experiments are conducted for an idealized MRG or ER wave using a linear shallow-water model. The results confirm that the monsoon background flow can lead to an MRG-to-TD transition and the ER wave amplifies along the axis of the MT and is more active in the strong MT state. Those results are consistent with the findings in Part I. This indicates that the mean flow of the MT provides a favorable background condition for the development of the waves and acts as a key energy source.


2014 ◽  
Vol 142 (4) ◽  
pp. 1472-1488 ◽  
Author(s):  
Biao Geng ◽  
Kunio Yoneyama ◽  
Ryuichi Shirooka

Abstract This study examined the synoptic evolution and internal structure of a monsoon trough in association with the deep equatorward intrusion of a midlatitude upper trough in the western North Pacific Ocean in June 2008. The study was based on data from routine synoptic observations and intensive observations conducted on board the research vessel Mirai at 12°N, 135°E. The monsoon trough was first observed to extend southeastward from the center of a tropical depression. It then moved northward, with its eastern edge moving faster and approaching a surface low pressure cell induced by the upper trough. The distinct northward migration caused the monsoon trough to become oriented from the southwest to the northeast. The monsoon trough merged with the surface low pressure cell and extended broadly northeastward. The passage of the monsoon trough over the Mirai was accompanied by lower pressure, higher air and sea surface temperature, and minimal rainfall. The monsoon trough extended upward to nearly 500 hPa and sloped southward with height. It was overlain by northwesterly winds, negative geopotential height and temperature anomalies, and extremely dry air in the upper troposphere. Precipitation systems were weak and scattered near the monsoon trough but were intense and extensive south of the surface monsoon trough, where intense low-level convergence and upper-level divergence caused deep and vigorous upward motion. It appears that the upper trough exerted important impacts on the development of both the monsoon trough and associated precipitation, which are discussed according to the observational results.


2020 ◽  
Vol 33 (8) ◽  
pp. 3271-3288
Author(s):  
Juan Feng ◽  
Wen Chen ◽  
Xiaocong Wang

AbstractThe El Niño Modoki–induced anomalous western North Pacific anticyclone (WNPAC) undergoes an interesting reintensification process in the El Niño Modoki decaying summer, the period when El Niño Modoki decays but warm sea surface temperature (SST) anomalies over the tropical North Atlantic (TNA) and cold SST anomalies over the central-eastern Pacific (CEP) dominate. In this study, the region (TNA or CEP) in which the SST anomalies exert a relatively important influence on reintensification of the WNPAC is investigated. Observational analysis demonstrates that when only anomalous CEP SST cooling occurs, the WNPAC experiences a weak reintensification. In contrast, when only anomalous TNA SST warming emerges, the WNPAC experiences a remarkable reintensification. Numerical simulation analysis demonstrates that even though the same magnitude of CEP SST cooling and TNA warming is respectively set to force the atmospheric general circulation model, the response of the WNPAC is still much stronger in the TNA warming experiment than in the CEP cooling experiment. Further analysis demonstrates that this difference is caused by the distinct location of the effective tropical forcing between the CEP SST cooling and TNA SST warming for producing a WNPAC. The CEP cooling-induced effective anomalous diabatic cooling is located in the central Pacific, by which the forced anticyclone becomes gradually weak from the central Pacific to the western North Pacific. Thus, a weak WNPAC is produced. In contrast, as the TNA SST warming–induced effective anomalous diabatic cooling is just located in the western North Pacific via a Kelvin wave–induced Ekman divergence process, the forced anticyclone is significant and powerful in the western North Pacific.


2015 ◽  
Vol 28 (18) ◽  
pp. 7108-7127 ◽  
Author(s):  
Liang Wu ◽  
Zhiping Wen ◽  
Renguang Wu

Abstract The present study investigates the possible linkage between the monsoon trough and the interannual variability of the activity of westward-propagating tropical waves (WTW) over the western North Pacific (WNP) during July–November for the period 1979–2007. It is shown that the interannual variability of WTW activity is closely related to the location of the monsoon trough. During the years when the enhanced (weakened) monsoon trough extends eastward (retreats westward), the lower-tropospheric WTW activity is above (below) normal within the southeastern quadrant of the WNP. Furthermore, this study evaluates different wave structures and dynamics of two types of WTWs, equatorial Rossby (ER) waves and mixed Rossby–gravity (MRG)–tropical depression (TD)-type waves, in strong monsoon trough (S-MT) and weak monsoon trough (W-MT) years over the WNP. There is a significant change in the three-dimensional structure as those waves propagate westward to the east of the monsoon trough. For the TD–MRG waves, an apparent transition from MRG waves to off-equatorial TD disturbances is identified in the region of the monsoon trough. For the ER waves, their amplitudes have a faster growth, but their structures and propagation characters have no marked change. Differences in the location of the monsoon trough may lead to an east–west contrast in the WTWs. In a companion study (Part II), diagnostics of energetics and numerical experiments are conducted to explain the observed results in the present study.


2014 ◽  
Vol 41 (12) ◽  
pp. 4332-4339 ◽  
Author(s):  
Xi Cao ◽  
Tim Li ◽  
Melinda Peng ◽  
Wen Chen ◽  
Guanghua Chen

2019 ◽  
Vol 32 (23) ◽  
pp. 8021-8045 ◽  
Author(s):  
Yumi Choi ◽  
Kyung-Ja Ha ◽  
Fei-Fei Jin

Abstract Both the impacts of two types of El Niño on the western North Pacific (WNP) tropical cyclone (TC) activity and the seasonality in the relationship between genesis potential index (GPI) and El Niño–Southern Oscillation (ENSO) are investigated. The ENSO-induced GPI change over the northwestern (southeastern) part of the WNP is mostly attributed to the relative humidity (absolute vorticity) term, revealing a distinct meridional and zonal asymmetry in summer and fall, respectively. The seasonal change in ENSO (background states) from summer to fall is responsible for the seasonal change in GPI anomalies south of 20°N (over the northeastern part of the WNP). The downdraft induced by the strong upper-level convergence in the eastern Pacific (EP)-type El Niño and both the northwestward-shifted relative vorticity and northward-extended convection over the southeastern part of the WNP in the central Pacific (CP)-type El Niño lead to distinct TC impacts over East Asia (EA). The southward movement of genesis location of TCs and increased westward-moving TCs account for the enhanced strong typhoon activity for the EP-type El Niño in summer. In fall the downdraft and anomalous anticyclonic steering flows over the western part of the WNP remarkably decrease TC impacts over EA. The enhanced moist static energy and midlevel upward motion over the eastern part of the WNP under the northern off-equatorial sea surface temperature warming as well as longer passage of TCs toward EA are responsible for the enhanced typhoon activity for the CP-type El Niño. It is thus important to consider the seasonality and El Niño pattern diversity to explore the El Niño–induced TC impacts over EA.


2018 ◽  
Vol 31 (5) ◽  
pp. 1771-1787 ◽  
Author(s):  
Jau-Ming Chen ◽  
Pei-Hua Tan ◽  
Liang Wu ◽  
Hui-Shan Chen ◽  
Jin-Shuen Liu ◽  
...  

This study examines the interannual variability of summer tropical cyclone (TC) rainfall (TCR) in the western North Pacific (WNP) depicted by the Climate Forecast System Reanalysis (CFSR). This interannual variability exhibits a maximum region near Taiwan (19°–28°N, 120°–128°E). Significantly increased TCR in this region is modulated by El Niño–Southern Oscillation (ENSO)-related large-scale processes. They feature elongated sea surface temperature warming in the tropical eastern Pacific and a southeastward-intensified monsoon trough. Increased TC movements are facilitated by interannual southerly/southeasterly flows in the northeastern periphery of the intensified monsoon trough to move from the tropical WNP toward the region near Taiwan, resulting in increased TCR. The coherent dynamic relations between interannual variability of summer TCR and large-scale environmental processes justify CFSR as being able to reasonably depict interannual characteristics of summer TCR in the WNP. For intraseasonal oscillation (ISO) modulations, TCs tend to cluster around the center of a 10–24-day cyclonic anomaly and follow its northwestward propagation from the tropical WNP toward the region near Taiwan. The above TC movements are subject to favorable background conditions provided by a northwest–southeasterly extending 30–60-day cyclonic anomaly. Summer TCR tends to increase (decrease) during El Niño (La Niña) years and strong (weak) ISO years. By comparing composite TCR anomalies and correlations with TCR variability, it is found that ENSO is more influential than ISO in modulating the interannual variability of summer TCR in the WNP.


2012 ◽  
Vol 25 (24) ◽  
pp. 8591-8610 ◽  
Author(s):  
Ken-Chung Ko ◽  
Huang-Hsiung Hsu ◽  
Chia Chou

Abstract Propagation and maintenance mechanisms of the tropical cyclone/submonthly wave pattern in the western North Pacific are explored. The wave pattern exhibited an equivalent barotropic structure with maximum vorticity and kinetic energy in the lower troposphere and propagated northwestward in the Philippine Sea in the intraseasonal oscillation (ISO) westerly phase and north-northeastward near the East Asian coast in the easterly phase. The mean flow advection played a dominant role in the propagation in both phases. Barotropic energy conversion is the dominant process in maintaining the kinetic energy of the pattern. The wave pattern tended to occur in the confluent zone between the monsoon trough and the anticyclonic ridge, where the kinetic energy could be efficiently extracted from the westerly mean flow associated with the monsoon trough. The individual circulation circuit embedded in the pattern was oriented northeast–southwest (east–west) to have optimal growth and propagation during the ISO westerly (easterly) phase. When tropical cyclones (TCs) developed in a development-favorable background flow provided by the submonthly wave pattern, they in turn enhanced the amplitudes of the vorticity and kinetic energy of the submonthly wave pattern by more than 50% and helped extract significantly more energy from the background ISO circulation. This TC feedback was much more significant in the ISO westerly phase because of the stronger clustering effect on TCs by the enhanced monsoon trough.


Sign in / Sign up

Export Citation Format

Share Document