Analysis of interannual features of tropical cyclones originating from the monsoon trough in the western North Pacific

2007 ◽  
Author(s):  
Jianyun Gao ◽  
Xiuzhi Zhang ◽  
Zhihong Jiang ◽  
Xinyan Lū
2008 ◽  
Vol 136 (11) ◽  
pp. 4527-4540 ◽  
Author(s):  
Tsing-Chang Chen ◽  
Shih-Yu Wang ◽  
Ming-Cheng Yen ◽  
Adam J. Clark

Abstract It has been observed that the percentage of tropical cyclones originating from easterly waves is much higher in the North Atlantic (∼60%) than in the western North Pacific (10%–20%). This disparity between the two ocean basins exists because the majority (71%) of tropical cyclogeneses in the western North Pacific occur in the favorable synoptic environments evolved from monsoon gyres. Because the North Atlantic does not have a monsoon trough similar to the western North Pacific that stimulates monsoon gyre formation, a much larger portion of tropical cyclogeneses than in the western North Pacific are caused directly by easterly waves. This study also analyzed the percentage of easterly waves that form tropical cyclones in the western North Pacific. By carefully separating easterly waves from the lower-tropospheric disturbances generated by upper-level vortices that originate from the tropical upper-tropospheric trough (TUTT), it is observed that 25% of easterly waves form tropical cyclones in this region. Because TUTT-induced lower-tropospheric disturbances often become embedded in the trade easterlies and resemble easterly waves, they have likely been mistakenly identified as easterly waves. Inclusion of these “false” easterly waves in the “true” easterly wave population would result in an underestimation of the percentage of easterly waves that form tropical cyclones, because the TUTT-induced disturbances rarely stimulate tropical cyclogenesis. However, an analysis of monsoon gyre formation mechanisms over the western North Pacific reveals that 82% of monsoon gyres develop through a monsoon trough–easterly wave interaction. Thus, it can be inferred that 58% (i.e., 82% × 71%) of tropical cyclones in this region are an indirect result of easterly waves. Including the percentage of tropical cyclones that form directly from easterly waves (∼25%), it is found that tropical cyclones formed directly and indirectly from easterly waves account for over 80% of tropical cyclogeneses in the western North Pacific. This is more than the percentage that has been documented by previous studies in the North Atlantic.


2015 ◽  
Vol 28 (4) ◽  
pp. 1465-1476 ◽  
Author(s):  
Hiroshi G. Takahashi ◽  
Hatsuki Fujinami ◽  
Tetsuzo Yasunari ◽  
Jun Matsumoto ◽  
Somchai Baimoung

Abstract The atmospheric circulation patterns that were responsible for the heavy flooding that occurred in Thailand in 2011 are examined. This paper also investigates the interannual variation in precipitation over Indochina over a 33-yr period from 1979–2011, focusing on the role of westward-propagating tropical cyclones (TCs) over the Asian monsoon region. Cyclonic anomalies and more westward-propagating TCs than expected from the climatology of the area were observed in 2011 along the monsoon trough from the northern Indian subcontinent, the Bay of Bengal, Indochina, and the western North Pacific, which contributed significantly to the 2011 Thai flood. The strength of monsoon westerlies was normal, which implies that the monsoon westerly was not responsible for the seasonal heavy rainfall in 2011. Similar results were also obtained from the 33-yr statistical analysis. The 5-month total precipitation over Indochina covaried interannually with that along the monsoon trough. In addition, above-normal precipitation over Indochina was observed when enhanced cyclonic circulation with more westward-propagating TCs along the monsoon trough was observed. Notably, the above-normal precipitation was not due to the enhanced monsoon westerly over Indochina. Therefore, the 2011 Thai flood was caused by the typical atmospheric circulation pattern for an above-normal precipitation year. It is noteworthy that the effect of sea surface temperature (SST) forcing over the western North Pacific and the Niño-3.4 region on total precipitation during the summer rainy season over Indochina was unclear over the 33-yr period.


2009 ◽  
Vol 22 (3) ◽  
pp. 582-599 ◽  
Author(s):  
Ken-Chung Ko ◽  
Huang-Hsiung Hsu

Abstract This study demonstrates the multiscale nature, from synoptic to intraseasonal time scales, of the atmospheric flow in the tropical western North Pacific. The multiscale features include intraseasonal oscillations (ISO), northwestward-propagating submonthly wave patterns, and recurving tropical cyclones (TCs). In the ISO westerly phase, the wave pattern was better organized and the TCs were clustered near the cyclonic circulation of the wave pattern during the genesis, development, and propagation. On the other hand, the wave pattern and TCs were weak and poorly organized in the ISO easterly phase. The distinct characteristics between the westerly and easterly phases could be attributed to the ISO modulation on the monsoon trough and the subtropical anticyclonic ridge. The ISO in the westerly phase provided a favorable background (e.g., enhanced monsoon trough and moisture confluent zone) for the wave–TC pattern development, while the ISO in the easterly phase provided a less favorable environment.


2013 ◽  
Vol 141 (2) ◽  
pp. 499-505 ◽  
Author(s):  
John Molinari ◽  
David Vollaro

Abstract It is frequently stated that 70%–80% of western North Pacific tropical cyclones form “within the monsoon trough,” but without an objective definition of the term. Several definitions are tested here. When the monsoon trough (MT) is defined as the contiguous region where long-term (1988–2010) mean July–November 850-hPa relative vorticity is positive, 73% of all July–November tropical cyclones form within the MT. This percentage varies interannually, however, from as low as 50% to nearly 100%. The percentage correlates with the Niño-3.4 index, with more storms forming within the MT during warm periods. When the MT is defined instead using long-term monthly mean ζ850, more than 80% of tropical cyclones form within the MT in all months except July and August, when more than 30% of storms form poleward of the MT. It is hypothesized that the known peak in the frequency of upper-tropospheric midlatitude wave breaking in July and August is responsible. It is argued that any long-term mean provides a suitable definition of the MT. Defining it on less than seasonal time scales, however, creates a lack of conceptual separation between the MT and other tropical disturbances such as the MJO, equatorial waves, and easterly waves. The term monsoon trough should represent a climatological feature that provides an asymmetric background state within which other disturbances evolve.


2006 ◽  
Vol 19 (21) ◽  
pp. 5709-5720 ◽  
Author(s):  
Tsing-Chang Chen ◽  
Shih-Yu Wang ◽  
Ming-Cheng Yen

Abstract An effort was made to search for relationships between interannual variations of population, lifetime, genesis locations, and intensity of named typhoons and numbered tropical depressions in the western North Pacific during the 1979–2002 period. To support this research task, climatological relationships of tropical cyclone characteristics were also investigated for these cyclones. Major findings of this study are summarized as follows:Climatology: Measured by the intensity scale of the Japan Meteorological Agency, three groups of tropical cyclones were identified in terms of population versus intensity: Group 1 [tropical depression (TD) + typhoon (TY)], Group 2 (strong + very strong TY), and Group 3 (catastrophic TY). This group division coincides with that formed in terms of lifetime of tropical cyclones versus intensity. Weak cyclones (Group 1) have a larger population than strong cyclones (Group 3), while the former group has shorter lifetime than the latter group. For genesis locations, the monsoon trough is established as a favorable region of tropical cyclone genesis because it provides an environment of large vorticity. Therefore, the northward latitudinal displacement of the maximum genesis frequency in the three groups of tropical cyclones follows that of the monsoon trough.Interannual variation: Any mechanism that can modulate the location and intensity of the monsoon trough affects the genesis location and frequency of tropical cyclones. In response to tropical Pacific sea surface temperature anomalies, a short wave train consisting of east–west oriented cells emanates from the Tropics and progresses along the western North Pacific rim. Population of the Group-1 tropical cyclones varies interannually in phase with the oscillation of the anomalous circulation cell northeast of Taiwan and south of Japan in this short wave train, while that of Group 3 fluctuates coherently with the tropical cell of this short wave train. Because these two anomalous circulation cells exhibit opposite polarity, the out-of-phase interannual oscillation between these two cells results in the opposite interannual variation of genesis frequency between tropical cyclones of Groups 1 and 3.


2018 ◽  
Vol 35 (4) ◽  
pp. 423-434
Author(s):  
Shumin Chen ◽  
Weibiao Li ◽  
Zhiping Wen ◽  
Mingsen Zhou ◽  
Youyu Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document