Molecular regulation of vertebrate retina cell fate

2009 ◽  
Vol 87 (3) ◽  
pp. 284-295 ◽  
Author(s):  
Massimiliano Andreazzoli
2014 ◽  
Author(s):  
Patrick Seale ◽  
Wenshan Wang ◽  
Sona Rajakumari ◽  
Matthew Harms

Development ◽  
1998 ◽  
Vol 125 (20) ◽  
pp. 3967-3975 ◽  
Author(s):  
S. McFarlane ◽  
M.E. Zuber ◽  
C.E. Holt

The mature vertebrate retina contains seven major cell types that develop from an apparently homogenous population of precursor cells. Clonal analyses have suggested that environmental influences play a major role in specifying retinal cell identity. Fibroblast growth factor-2 is present in the developing retina and regulates the survival, proliferation and differentiation of developing retinal cells in culture. Here we have tested whether fibroblast growth factor receptor signaling biases retinal cell fate decisions in vivo. Fibroblast growth factor receptors were inhibited in retinal precursors in Xenopus embryos by expressing a dominant negative form of the receptor, XFD. Dorsal animal blastomeres that give rise to the retina were injected with cDNA expression constructs for XFD and a control non-functional mutant receptor, D48, and the cell fates of transgene-expressing cells in the mature retina determined. Fibroblast growth factor receptor blockade results in almost a 50% loss of photoreceptors and amacrine cells, and a concurrent 3.5-fold increase in Muller glia, suggesting a shift towards a Muller cell fate in the absence of a fibroblast growth factor receptor signal. Inhibition of non-fibroblast-growth-factor-mediated receptor signaling with a third mutant receptor, HAVO, alters cell fate in an opposite manner. These results suggest that it is the balance of fibroblast growth factor and non-fibroblast growth factor ligand signals that influences retinal cell genesis.


1996 ◽  
Vol 93 (2) ◽  
pp. 589-595 ◽  
Author(s):  
C. L. Cepko ◽  
C. P. Austin ◽  
X. Yang ◽  
M. Alexiades ◽  
D. Ezzeddine

Author(s):  
Pravin Prakash ◽  
Rakesh Srivastava ◽  
Priti Prasad ◽  
Vipin Kumar Tiwari ◽  
Ajay Kumar ◽  
...  

The epidermal cells on the surface of the cotton ovules undergo differentiation to produce fibers, which are single-celled hair-like protrusions resembling the plant trichomes. The initiation of these unicellular fibers from the cotton ovule surface is a complex and tightly regulated process. The initiation step is the cell fate-determining stage, which leads to the commitment of cells that eventually developed into fibers, thus becomes the most crucial phase in fiber development. The in-depth knowledge of molecular regulation is a prerequisite to get a clear view of the fiber initiation process's genetic and epigenetic control. The identification and functional validation of cotton fiber initiation-related genes, few fibreless mutants, transcription factors, microRNAs, epigenetic regulators, as well as the elucidation of the role of phytohormones as signaling molecules, has played a significant role in understanding the cotton fiber initiation process at the molecular level. This review focuses on the comprehensive information regarding the genetic and epigenetic regulation of cotton fiber initiation. Thus, the review will provide readers insight into mechanistic details that operate during cotton fiber initiation.


2015 ◽  
Vol 33 (6) ◽  
pp. 800-812 ◽  
Author(s):  
Alice H. Huang ◽  
Helen H. Lu ◽  
Ronen Schweitzer

Sign in / Sign up

Export Citation Format

Share Document