Molecular regulation of brown and beige fat cell fate

2014 ◽  
Author(s):  
Patrick Seale ◽  
Wenshan Wang ◽  
Sona Rajakumari ◽  
Matthew Harms
2017 ◽  
Vol 114 (20) ◽  
pp. 5265-5270 ◽  
Author(s):  
Delphine Duteil ◽  
Milica Tosic ◽  
Dominica Willmann ◽  
Anastasia Georgiadi ◽  
Toufike Kanouni ◽  
...  

Aging is accompanied by major changes in adipose tissue distribution and function. In particular, with time, thermogenic-competent beige adipocytes progressively gain a white adipocyte morphology. However, the mechanisms controlling the age-related transition of beige adipocytes to white adipocytes remain unclear. Lysine-specific demethylase 1 (Lsd1) is an epigenetic eraser enzyme positively regulating differentiation and function of adipocytes. Here we show that Lsd1 levels decrease in aging inguinal white adipose tissue concomitantly with beige fat cell decline. Accordingly, adipocyte-specific increase of Lsd1 expression is sufficient to rescue the age-related transition of beige adipocytes to white adipocytes in vivo, whereas loss of Lsd1 precipitates it. Lsd1 maintains beige adipocytes by controlling the expression of peroxisome proliferator-activated receptor α (Ppara), and treatment with a Ppara agonist is sufficient to rescue the loss of beige adipocytes caused by Lsd1 ablation. In summary, our data provide insights into the mechanism controlling the age-related beige-to-white adipocyte transition and identify Lsd1 as a regulator of beige fat cell maintenance.


2010 ◽  
Vol 108 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Tim J. Schulz ◽  
Tian Lian Huang ◽  
Thien T. Tran ◽  
Hongbin Zhang ◽  
Kristy L. Townsend ◽  
...  

Brown fat is specialized for energy expenditure and has therefore been proposed to function as a defense against obesity. Despite recent advances in delineating the transcriptional regulation of brown adipocyte differentiation, cellular lineage specification and developmental cues specifying brown-fat cell fate remain poorly understood. In this study, we identify and isolate a subpopulation of adipogenic progenitors (Sca-1+/CD45−/Mac1−; referred to as Sca-1+ progenitor cells, ScaPCs) residing in murine brown fat, white fat, and skeletal muscle. ScaPCs derived from different tissues possess unique molecular expression signatures and adipogenic capacities. Importantly, although the ScaPCs from interscapular brown adipose tissue (BAT) are constitutively committed brown-fat progenitors, Sca-1+ cells from skeletal muscle and subcutaneous white fat are highly inducible to differentiate into brown-like adipocytes upon stimulation with bone morphogenetic protein 7 (BMP7). Consistent with these findings, human preadipocytes isolated from subcutaneous white fat also exhibit the greatest inducible capacity to become brown adipocytes compared with cells isolated from mesenteric or omental white fat. When muscle-resident ScaPCs are re-engrafted into skeletal muscle of syngeneic mice, BMP7-treated ScaPCs efficiently develop into adipose tissue with brown fat-specific characteristics. Importantly, ScaPCs from obesity-resistant mice exhibit markedly higher thermogenic capacity compared with cells isolated from obesity-prone mice. These data establish the molecular characteristics of tissue-resident adipose progenitors and demonstrate a dynamic interplay between these progenitors and inductive signals that act in concert to specify brown adipocyte development.


2000 ◽  
Vol 2000 (53) ◽  
pp. tw12-tw12
Keyword(s):  

Author(s):  
Pravin Prakash ◽  
Rakesh Srivastava ◽  
Priti Prasad ◽  
Vipin Kumar Tiwari ◽  
Ajay Kumar ◽  
...  

The epidermal cells on the surface of the cotton ovules undergo differentiation to produce fibers, which are single-celled hair-like protrusions resembling the plant trichomes. The initiation of these unicellular fibers from the cotton ovule surface is a complex and tightly regulated process. The initiation step is the cell fate-determining stage, which leads to the commitment of cells that eventually developed into fibers, thus becomes the most crucial phase in fiber development. The in-depth knowledge of molecular regulation is a prerequisite to get a clear view of the fiber initiation process's genetic and epigenetic control. The identification and functional validation of cotton fiber initiation-related genes, few fibreless mutants, transcription factors, microRNAs, epigenetic regulators, as well as the elucidation of the role of phytohormones as signaling molecules, has played a significant role in understanding the cotton fiber initiation process at the molecular level. This review focuses on the comprehensive information regarding the genetic and epigenetic regulation of cotton fiber initiation. Thus, the review will provide readers insight into mechanistic details that operate during cotton fiber initiation.


2015 ◽  
Vol 33 (6) ◽  
pp. 800-812 ◽  
Author(s):  
Alice H. Huang ◽  
Helen H. Lu ◽  
Ronen Schweitzer

Sign in / Sign up

Export Citation Format

Share Document