Molecular regulation of tendon cell fate during development

2015 ◽  
Vol 33 (6) ◽  
pp. 800-812 ◽  
Author(s):  
Alice H. Huang ◽  
Helen H. Lu ◽  
Ronen Schweitzer
2014 ◽  
Author(s):  
Patrick Seale ◽  
Wenshan Wang ◽  
Sona Rajakumari ◽  
Matthew Harms

2019 ◽  
Author(s):  
Guak-Kim Tan ◽  
Brian A. Pryce ◽  
Anna Stabio ◽  
John V. Brigande ◽  
ChaoJie Wang ◽  
...  

AbstractStudies of cell fate focus on specification, but little is known about maintenance of the differentiated state. We find that TGFβ signaling plays an essential role in maintenance of the tendon cell fate. To examine the role TGFβ signaling in tenocytes TGFβ type II receptor was targeted in the Scleraxis cell lineage. Tendon development was not disrupted in mutant embryos, but shortly after birth tenocytes lost differentiation markers and reverted to a more stem/progenitor state. Targeting of Tgfbr2 using other Cre drivers did not cause tenocyte dedifferentiation suggesting a critical significance for the spatio-temporal activity of ScxCre. Viral reintroduction of Tgfbr2 to mutants was sufficient to prevent and even rescue mutant tenocytes suggesting a continuous and cell-autonomous role for TGFβ signaling in cell fate maintenance. These results uncover the critical importance of molecular pathways that maintain the differentiated cell fate and a key role for TGFβ signaling in these processes.


Author(s):  
Pravin Prakash ◽  
Rakesh Srivastava ◽  
Priti Prasad ◽  
Vipin Kumar Tiwari ◽  
Ajay Kumar ◽  
...  

The epidermal cells on the surface of the cotton ovules undergo differentiation to produce fibers, which are single-celled hair-like protrusions resembling the plant trichomes. The initiation of these unicellular fibers from the cotton ovule surface is a complex and tightly regulated process. The initiation step is the cell fate-determining stage, which leads to the commitment of cells that eventually developed into fibers, thus becomes the most crucial phase in fiber development. The in-depth knowledge of molecular regulation is a prerequisite to get a clear view of the fiber initiation process's genetic and epigenetic control. The identification and functional validation of cotton fiber initiation-related genes, few fibreless mutants, transcription factors, microRNAs, epigenetic regulators, as well as the elucidation of the role of phytohormones as signaling molecules, has played a significant role in understanding the cotton fiber initiation process at the molecular level. This review focuses on the comprehensive information regarding the genetic and epigenetic regulation of cotton fiber initiation. Thus, the review will provide readers insight into mechanistic details that operate during cotton fiber initiation.


2020 ◽  
Author(s):  
Guak-Kim Tan ◽  
Brian A Pryce ◽  
Anna Stabio ◽  
John V Brigande ◽  
ChaoJie Wang ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Guak-Kim Tan ◽  
Brian A Pryce ◽  
Anna Stabio ◽  
John V Brigande ◽  
ChaoJie Wang ◽  
...  

Studies of cell fate focus on specification, but little is known about maintenance of the differentiated state. In this study, we find that the mouse tendon cell fate requires continuous maintenance in vivo and identify an essential role for TGFβ signaling in maintenance of the tendon cell fate. To examine the role of TGFβ signaling in tenocyte function the TGFβ type II receptor (Tgfbr2) was targeted in the Scleraxis-expressing cell lineage using the ScxCre deletor. Tendon development was not disrupted in mutant embryos, but shortly after birth tenocytes lost differentiation markers and reverted to a more stem/progenitor state. Viral reintroduction of Tgfbr2 to mutants prevented and even rescued tenocyte dedifferentiation suggesting a continuous and cell autonomous role for TGFβ signaling in cell fate maintenance. These results uncover the critical importance of molecular pathways that maintain the differentiated cell fate and a key role for TGFβ signaling in these processes.


2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


Sign in / Sign up

Export Citation Format

Share Document