scholarly journals Nucleosome functions in spindle assembly and nuclear envelope formation

BioEssays ◽  
2015 ◽  
Vol 37 (10) ◽  
pp. 1074-1085 ◽  
Author(s):  
Christian Zierhut ◽  
Hironori Funabiki
1995 ◽  
Vol 131 (5) ◽  
pp. 1125-1131 ◽  
Author(s):  
D Zhang ◽  
R B Nicklas

Chromosomes are known to enhance spindle microtubule assembly in grasshopper spermatocytes, which suggested to us that chromosomes might play an essential role in the initiation of spindle formation. Chromosomes might, for example, activate other spindle components such as centrosomes and tubulin subunits upon the breakdown of the nuclear envelope. We tested this possibility in living grasshopper spermatocytes. We ruptured the nuclear envelope during prophase, which prematurely exposed the centrosomes to chromosomes and nuclear sap. Spindle assembly was promptly initiated. In contrast, assembly of the spindle was completely inhibited if the nucleus was mechanically removed from a late prophase cell. Other experiments showed that the trigger for spindle assembly is associated with the chromosomes; other constituents of the nucleus cannot initiate spindle assembly in the absence of the chromosomes. The initiation of spindle assembly required centrosomes as well as chromosomes. Extracting centrosomes from late prophase cells completely inhibited spindle assembly after dissolution of the nuclear envelope. We conclude that the normal formation of a bipolar spindle in grasshopper spermatocytes is regulated by chromosomes. A possible explanation is an activator, perhaps a chromosomal protein (Yeo, J.-P., F. Alderuccio, and B.-H. Toh. 1994a. Nature (Lond.). 367: 288-291), that promotes and stabilizes the assembly of astral microtubules and thus promotes assembly of the spindle.


2001 ◽  
Vol 356 (2) ◽  
pp. 495 ◽  
Author(s):  
Banafshé LARIJANI ◽  
Teresa M. BARONA ◽  
Dominic L. POCCIA

2008 ◽  
Vol 182 (5) ◽  
pp. 911-924 ◽  
Author(s):  
Daniel J. Anderson ◽  
Martin W. Hetzer

During mitosis in metazoans, segregated chromosomes become enclosed by the nuclear envelope (NE), a double membrane that is continuous with the endoplasmic reticulum (ER). Recent in vitro data suggest that NE formation occurs by chromatin-mediated reorganization of the tubular ER; however, the basic principles of such a membrane-reshaping process remain uncharacterized. Here, we present a quantitative analysis of nuclear membrane assembly in mammalian cells using time-lapse microscopy. From the initial recruitment of ER tubules to chromatin, the formation of a membrane-enclosed, transport-competent nucleus occurs within ∼12 min. Overexpression of the ER tubule-forming proteins reticulon 3, reticulon 4, and DP1 inhibits NE formation and nuclear expansion, whereas their knockdown accelerates nuclear assembly. This suggests that the transition from membrane tubules to sheets is rate-limiting for nuclear assembly. Our results provide evidence that ER-shaping proteins are directly involved in the reconstruction of the nuclear compartment and that morphological restructuring of the ER is the principal mechanism of NE formation in vivo.


1988 ◽  
Vol 107 (1) ◽  
pp. 57-68 ◽  
Author(s):  
K L Wilson ◽  
J Newport

The reformation of functioning organelles at the end of mitosis presents a problem in vesicle targeting. Using extracts made from Xenopus laevis frog eggs, we have studied in vitro the vesicles that reform the nuclear envelope. In the in vitro assay, nuclear envelope growth is linear with time. Furthermore, the final surface area of the nuclear envelopes formed is directly dependent upon the amount of membrane vesicles added to the assay. Egg membrane vesicles could be fractionated into two populations, only one of which was competent for nuclear envelope assembly. We found that vesicles active in nuclear envelope assembly contained markers (BiP and alpha-glucosidase II) characteristic of the endoplasmic reticulum (ER), but that the majority of ER-derived vesicles do not contribute to nuclear envelope size. This functional distinction between nuclear vesicles and ER-derived vesicles implies that nuclear vesicles are unique and possess at least one factor required for envelope assembly that is lacking in other vesicles. Consistent with this, treatment of vesicles with trypsin destroyed their ability to form a nuclear envelope; electron microscopic studies indicate that the trypsin-sensitive proteins is required for vesicles to bind to chromatin. However, the protease-sensitive component(s) is resistant to treatments that disrupt protein-protein interactions, such as high salt, EDTA, or low ionic strength solutions. We propose that an integral membrane protein, or protein tightly associated with the membrane, is critical for nuclear vesicle targeting or function.


1976 ◽  
Vol 70 (1) ◽  
pp. 75-85 ◽  
Author(s):  
G Sluder

Spindle assembly is studied in the eggs of the sea urchin Lytechinus variegatus by experimentally varying the amount of polymerizable tubulin within the egg. Aliquots of fertilized eggs from the same female are individually pulsed for 1-6 min with 1 X 10(-6) M Colcemid at least 20 min before first nuclear envelope breakdown. This treatment inactivates a portion of the cellular tubulin before the spindle is formed. Upon entering mitosis, treated eggs form functional spindles that are reduced in length and birefringent retardation but not width. With increased exposure to Colcemid, the length and retardation of the metaphase spindles are progressively reduced. Similar results are obtained by pulsing the eggs with Colcemid before fertilization, which demonstrates that the tubulin found in unfertilized sea urchin eggs is later used in spindle formation. Spindles, once assembled, are responsive to increases in the amount of polymerizable tubulin within the cell. Rapid increases in the amount of polymerizable tubulin within a Colcemid-treated cell can be experimentally effected by irradiating the cells with 366-nm light. This treatment photochemically inactivates the Colcemid, thereby freeing the tubulin to polymerize. Upon irradiation, the small prometaphase spindles of Colcemid-treated cells immediately increase in length and retardation. In these irradiated cells, spindle length and retardation increase as much as four times faster than they do during prometaphase for normal spindles. This suggests that the rate of the normal prometaphase increase in retardation and spindle size may be determined by factors other than the maximum rate of tubulin polymerization in the cell.


1974 ◽  
Vol 62 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Yoshitaka Obara ◽  
Lee S. Chai ◽  
Herbert Weinfeld ◽  
Avery A. Sandberg

Fusing human HeLa metaphase cells with HeLa interphase cells resulted within 30 min in either of two phenomena in the resultant binucleate cell: either prophasing of the interphase nucleus or formation of a normal-appearing nuclear envelope around the metaphase chromosomes. The frequency of either occurrence was strongly dependent on environmental pH. At pH's of 6.6–8.0, prophasing predominated; at pH 8.5 nuclear envelope formation predominated. Additionally, the frequencies of the two events in multinucleate cells depended on the metaphase/interphase ratio. When the ratio was 0.33 nuclear envelope formation predominated; when it was 2.0 prophasing predominated. In their general features, the results with fused HeLa cells resembled those reported earlier with fused Chinese hamster Don cells. However, the results provided an indication that between pH 6.6 and 8.0 the HeLa metaphase cells possessed a much greater capacity than the Don metaphase cells to induce prophasing. Fusion of Don metaphase cells with HeLa interphase cells or of Don interphase cells with HeLa metaphase cells at pH 8.0 resulted in nuclear envelope formation or prophasing in each kind of heterokaryon. As in the homokaryons, the frequencies of the two events in the heterokaryons depended on the metaphase/interphase ratio. The statistics of prophasing and nuclear envelope formation in the homo- and heterokaryon populations were consistent with the notion that disruption or formation of the nuclear envelope depends on the balance attained between disruptive and formative processes.


2016 ◽  
Vol 27 (20) ◽  
pp. 3122-3131 ◽  
Author(s):  
Ian D. Wolff ◽  
Michael V. Tran ◽  
Timothy J. Mullen ◽  
Anne M. Villeneuve ◽  
Sarah M. Wignall

Although centrosomes contribute to spindle formation in most cell types, oocytes of many species are acentrosomal and must organize spindles in their absence. Here we investigate this process in Caenorhabditis elegans, detailing how acentrosomal spindles form and revealing mechanisms required to establish bipolarity. Using high-resolution imaging, we find that in meiosis I, microtubules initially form a “cage-like” structure inside the disassembling nuclear envelope. This structure reorganizes so that minus ends are sorted to the periphery of the array, forming multiple nascent poles that then coalesce until bipolarity is achieved. In meiosis II, microtubules nucleate in the vicinity of chromosomes but then undergo similar sorting and pole formation events. We further show that KLP-18/kinesin-12 and MESP-1, previously shown to be required for spindle bipolarity, likely contribute to bipolarity by sorting microtubules. After their depletion, minus ends are not sorted outward at the early stages of spindle assembly and instead converge. These proteins colocalize on microtubules, are interdependent for localization, and can interact, suggesting that they work together. We propose that KLP-18/kinesin-12 and MESP-1 form a complex that functions to sort microtubules of mixed polarity into a configuration in which minus ends are away from the chromosomes, enabling formation of nascent poles.


Sign in / Sign up

Export Citation Format

Share Document