scholarly journals Modulation of H3.3 chromatin assembly by PML: A way to regulate epigenetic inheritance

BioEssays ◽  
2021 ◽  
pp. 2100038
Author(s):  
Erwan Delbarre ◽  
Susan M. Janicki
2021 ◽  
Vol 22 (3) ◽  
pp. 1113
Author(s):  
Céline Duc ◽  
Christophe Thiriet

The doubling of genomic DNA during the S-phase of the cell cycle involves the global remodeling of chromatin at replication forks. The present review focuses on the eviction of nucleosomes in front of the replication forks to facilitate the passage of replication machinery and the mechanism of replication-coupled chromatin assembly behind the replication forks. The recycling of parental histones as well as the nuclear import and the assembly of newly synthesized histones are also discussed with regard to the epigenetic inheritance.


2014 ◽  
Vol 56 ◽  
pp. 207-219 ◽  
Author(s):  
Chi L.L. Pham ◽  
Ann H. Kwan ◽  
Margaret Sunde

Amyloids are insoluble fibrillar protein deposits with an underlying cross-β structure initially discovered in the context of human diseases. However, it is now clear that the same fibrillar structure is used by many organisms, from bacteria to humans, in order to achieve a diverse range of biological functions. These functions include structure and protection (e.g. curli and chorion proteins, and insect and spider silk proteins), aiding interface transitions and cell–cell recognition (e.g. chaplins, rodlins and hydrophobins), protein control and storage (e.g. Microcin E492, modulins and PMEL), and epigenetic inheritance and memory [e.g. Sup35, Ure2p, HET-s and CPEB (cytoplasmic polyadenylation element-binding protein)]. As more examples of functional amyloid come to light, the list of roles associated with functional amyloids has continued to expand. More recently, amyloids have also been implicated in signal transduction [e.g. RIP1/RIP3 (receptor-interacting protein)] and perhaps in host defence [e.g. aDrs (anionic dermaseptin) peptide]. The present chapter discusses in detail functional amyloids that are used in Nature by micro-organisms, non-mammalian animals and mammals, including the biological roles that they play, their molecular composition and how they assemble, as well as the coping strategies that organisms have evolved to avoid the potential toxicity of functional amyloid.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


Sign in / Sign up

Export Citation Format

Share Document