Continuous purification of antibodies from cell culture supernatant with aqueous two-phase systems: From concept to process

2013 ◽  
Vol 8 (3) ◽  
pp. 352-362 ◽  
Author(s):  
Paula A. J. Rosa ◽  
Ana M. Azevedo ◽  
S. Sommerfeld ◽  
Martina Mutter ◽  
Werner Bäcker ◽  
...  
MRS Advances ◽  
2017 ◽  
Vol 2 (45) ◽  
pp. 2435-2441 ◽  
Author(s):  
Kristin Robin Ko ◽  
Rishima Agarwal ◽  
John Frampton

ABSTRACTThe three-dimensional (3D) culture of neural cells in extracellular matrix (ECM) gels holds promise for modeling neurodegenerative diseases and pre-clinical evaluation of novel therapeutics. However, most current strategies for fabricating 3D neural cell cultures are not well suited to automated production and analysis. Here, we present a facile, replicable, 3D cell culture system that is compatible with standard laboratory equipment and high-throughput workflows. This system uses aqueous two-phase systems (ATPSs) to confine small volumes (5 and 10 μl) of a commonly used ECM hydrogel (Matrigel) into thin, discrete layers, enabling highly-uniform production of 3D neural cell cultures in a 96-well plate format. These 3D neural cell cultures can be readily analyzed by epifluorescence microscopy and microplate reader. Our preliminary results show that many common polymers used in ATPSs interfere with Matrigel gelation and instead form fibrous precipitates. However, 0.5% hydroxypropyl methylcellulose (HPMC) and 2.5% dextran 10 kDa (D10) were observed to retain Matrigel integrity and had minimal impact on cell viability. This novel system offers a promising yet accessible platform for high-throughput fabrication of 3D neural tissues using readily available and cost-effective materials.


2021 ◽  
Vol 60 (15) ◽  
pp. 5403-5410
Author(s):  
Martha Alicia González-Félix ◽  
Luis Alberto Mejía-Manzano ◽  
Bertha A. Barba-Dávila ◽  
Sergio O. Serna-Saldívar ◽  
José González-Valdez

Sign in / Sign up

Export Citation Format

Share Document