Generalized concentration dependence of globular protein self-diffusion coefficients in aqueous solutions

Biopolymers ◽  
2002 ◽  
Vol 63 (2) ◽  
pp. 132-140 ◽  
Author(s):  
Irina V. Nesmelova ◽  
Vladimir D. Skirda ◽  
Vladimir D. Fedotov
Author(s):  
Victor P. Arkhipov ◽  
Natalia A. Kuzina ◽  
Andrei Filippov

AbstractAggregation numbers were calculated based on measurements of the self-diffusion coefficients, the effective hydrodynamic radii of micelles and aggregates of oxyethylated alkylphenols in aqueous solutions. On the assumption that the radii of spherical micelles are equal to the lengths of fully extended neonol molecules, the limiting values of aggregation numbers corresponding to spherically shaped neonol micelles were calculated. The concentration and temperature ranges under which spherical micelles of neonols are formed were determined.


1974 ◽  
Vol 14 (6) ◽  
pp. 915-918
Author(s):  
A. M. Sazonov ◽  
V. M. Olevskii ◽  
A. B. Porai-Koshits ◽  
V. N. Skobolev ◽  
G. A. Shmuilovich

2012 ◽  
Vol 1 (6) ◽  
pp. 334-346 ◽  
Author(s):  
Rafik Besbes ◽  
Noureddine Ouerfelli ◽  
Manef Abderabba ◽  
Patric Lindqvist-Reis ◽  
Habib Latrous

1994 ◽  
Vol 49 (3-4) ◽  
pp. 258-264 ◽  
Author(s):  
D. Girlich ◽  
H.-D. Lüdemann ◽  
C. Buttersack ◽  
K. Buchholz

The self diffusion coefficients D of the water molecules and of sucrose have been determined by the pulsed field gradient NMR technique over a wide range of temperatures and concentrations (cmax: 70% w/w suc.). All temperature dependencies can be fitted to a Vogel- Tammann-Fulcher equation. The isothermic concentration dependence of D for the sucrose is given by a simple exponential concentration dependence


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 947 ◽  
Author(s):  
Alexander Klinov ◽  
Ivan Anashkin

Based on the molecular dynamics method, the calculations for diffusion coefficients were carried out in binary aqueous solutions of three alcohols: ethanol, isopropanol, and tert-butanol. The intermolecular potential TIP4P/2005 was used for water; and five force fields were analyzed for the alcohols. The force fields providing the best accuracy of calculation were identified based on a comparison of the calculated self-diffusion coefficients of pure alcohols with the experimental data for internal (Einstein) diffusion coefficients of alcohols in solutions. The temperature and concentration dependences of the interdiffusion coefficients were determined using Darken’s Equation. Transport (Fickian) diffusion coefficients were calculated using a thermodynamic factor determined by the non-random two-liquid (NRTL) and Willson models. It was demonstrated that for adequate reproduction of the experimental data when calculating the transport diffusion coefficients, the thermodynamic factor has to be 0.64. Simple approximations were obtained, providing satisfactory accuracy in calculating the concentration and temperature dependences of the transport diffusion coefficients in the studied mixtures.


Sign in / Sign up

Export Citation Format

Share Document