Self-assembly of bioelastomeric structures from solutions: Mean-field critical behavior and Flory-Huggins free energy of interactions

Biopolymers ◽  
1993 ◽  
Vol 33 (5) ◽  
pp. 743-752 ◽  
Author(s):  
F. Sciortino ◽  
K. U. Prasad ◽  
D. W. Urry ◽  
M. U. Palma
2021 ◽  
Vol 103 (5) ◽  
Author(s):  
R. Masoumi ◽  
F. Oloomi ◽  
A. Kargaran ◽  
A. Hosseiny ◽  
G. R. Jafari

1994 ◽  
Vol 343 ◽  
Author(s):  
S.C. Wardle ◽  
B.L. Adams ◽  
C.S. Nichols ◽  
D.A. Smith

ABSTRACTIt is well known from studies of individual interfaces that grain boundaries exhibit a spectrum of properties because their structure is misorientation dependent. Usually this variability is neglected and properties are modeled using a mean field approach. The limitations inherent in this approach can be overcome, in principle, using a combination of experimental techniques, theory and modeling. The bamboo structure of an interconnect is a particularly simple polycrystalline structure that can now be readily characterized experimentally and modeled in the computer. The grain misorientations in a [111] textured aluminum line have been measured using the new automated technique of orientational imaging microscopy. By relating boundary angle to diffusivity the expected stress voiding failure processes can be predicted through the link between misorientation angle, grain boundary excess free energy and diffusivity. Consequently it can be shown that the high energy boundaries are the favored failure sites thermodynamically and kinetically.


1995 ◽  
Vol 7 (6) ◽  
pp. 1257-1264 ◽  
Author(s):  
Enoch Kim ◽  
George M. Whitesides

2013 ◽  
Vol 11 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Aniello Cammarano ◽  
Giovanna Luca ◽  
Eugenio Amendola

AbstractFacile surface modification of polyester films was performed via chemical solutions treatment. Surface hydrolysis was carried out by means of sodium hydroxide solutions, leading to the formation of carboxylate groups. Three commercial polyester films of 100 μm in thickness were used in this work: AryLite™, Mylar™, and Teonex™, hydrolysis time being the main modification parameter. FTIR-ATR analysis, topography and contact angle (CA) measurements, surface free energy (SFE) and T-Peel adhesion tests were carried out to characterize the modified films. A quantitative estimate of the carboxylates surface coverage as a function of treatment time was obtained through a supramolecular approach, i.e. the ionic self-assembly of a tetracationic porphyrin chromophore onto the film surface. The surface free energy and critical surface tension of the hydrolyzed polyesters was evaluated by means of Zisman, Saito, Berthelot and Owens-Wendt methods. It was shown that NaOH solution treatment increases roughness, polarity and surface free energy of polymers. As a result, T-Peel strengths for modified Mylar™ and Teonex™ films were respectively 2.2 and 1.8 times higher than that for the unmodified films, whereas AryLite™ adhesion test failed.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Hadey K. Mohamad

The magnetic properties of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising model with different anisotropies are investigated by using the mean-field approximation (MFA). In particular, the effect of magnetic anisotropies on the compensation phenomenon, acting on A-atoms and B-ones for the mixed-spin model, has been considered in a zero field. The free energy of a mixed-spin Ising ferrimagnetic system from MFA of the Hamiltonian is calculated. By minimizing the free energy, we obtain the equilibrium magnetizations and the compensation points. The phase diagram of the system in the anisotropy dependence of transition temperature has been discussed as well. Our results of this model predict the existence of many (two or three) compensation points in the ordered system on a simple cubic lattice.


2005 ◽  
Vol 17 (07) ◽  
pp. 793-857 ◽  
Author(s):  
DMITRY PANCHENKO

In [11], Talagrand gave a rigorous proof of the Parisi formula in the classical Sherrington–Kirkpatrick (SK) model. In this paper, we build upon the methodology developed in [11] and extend Talagrand's result to the class of SK type models in which the spins have arbitrary prior distribution on a bounded subset of the real line.


2020 ◽  
Vol 117 (45) ◽  
pp. 27927-27933
Author(s):  
Huang Fang ◽  
Michael F. Hagan ◽  
W. Benjamin Rogers

Crystallization is fundamental to materials science and is central to a variety of applications, ranging from the fabrication of silicon wafers for microelectronics to the determination of protein structures. The basic picture is that a crystal nucleates from a homogeneous fluid by a spontaneous fluctuation that kicks the system over a single free-energy barrier. However, it is becoming apparent that nucleation is often more complicated than this simple picture and, instead, can proceed via multiple transformations of metastable structures along the pathway to the thermodynamic minimum. In this article, we observe, characterize, and model crystallization pathways using DNA-coated colloids. We use optical microscopy to investigate the crystallization of a binary colloidal mixture with single-particle resolution. We observe classical one-step pathways and nonclassical two-step pathways that proceed via a solid–solid transformation of a crystal intermediate. We also use enhanced sampling to compute the free-energy landscapes corresponding to our experiments and show that both one- and two-step pathways are driven by thermodynamics alone. Specifically, the two-step solid–solid transition is governed by a competition between two different crystal phases with free energies that depend on the crystal size. These results extend our understanding of available pathways to crystallization, by showing that size-dependent thermodynamic forces can produce pathways with multiple crystal phases that interconvert without free-energy barriers and could provide approaches to controlling the self-assembly of materials made from colloids.


2020 ◽  
Vol 102 (10) ◽  
Author(s):  
Thomas D. Swinburne ◽  
Jan Janssen ◽  
Mira Todorova ◽  
Gideon Simpson ◽  
Petr Plechac ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document