Mathematical modeling of induced foreign protein production by recombinant bacteria

1992 ◽  
Vol 39 (6) ◽  
pp. 635-646 ◽  
Author(s):  
Jongdae Lee ◽  
W. Fred Ramirez
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jennifer A. Schmidt ◽  
Lubna V. Richter ◽  
Lisa A. Condoluci ◽  
Beth A. Ahner

Abstract Background The global demand for functional proteins is extensive, diverse, and constantly increasing. Medicine, agriculture, and industrial manufacturing all rely on high-quality proteins as major active components or process additives. Historically, these demands have been met by microbial bioreactors that are expensive to operate and maintain, prone to contamination, and relatively inflexible to changing market demands. Well-established crop cultivation techniques coupled with new advancements in genetic engineering may offer a cheaper and more versatile protein production platform. Chloroplast-engineered plants, like tobacco, have the potential to produce large quantities of high-value proteins, but often result in engineered plants with mutant phenotypes. This technology needs to be fine-tuned for commercial applications to maximize target protein yield while maintaining robust plant growth. Results Here, we show that a previously developed Nicotiana tabacum line, TetC-cel6A, can produce an industrial cellulase at levels of up to 28% of total soluble protein (TSP) with a slight dwarf phenotype but no loss in biomass. In seedlings, the dwarf phenotype is recovered by exogenous application of gibberellic acid. We also demonstrate that accumulating foreign protein represents an added burden to the plants’ metabolism that can make them more sensitive to limiting growth conditions such as low nitrogen. The biomass of nitrogen-limited TetC-cel6A plants was found to be as much as 40% lower than wildtype (WT) tobacco, although heterologous cellulase production was not greatly reduced compared to well-fertilized TetC-cel6A plants. Furthermore, cultivation at elevated carbon dioxide (1600 ppm CO2) restored biomass accumulation in TetC-cel6A plants to that of WT, while also increasing total heterologous protein yield (mg Cel6A plant−1) by 50–70%. Conclusions The work reported here demonstrates that well-fertilized tobacco plants have a substantial degree of flexibility in protein metabolism and can accommodate considerable levels of some recombinant proteins without exhibiting deleterious mutant phenotypes. Furthermore, we show that the alterations to protein expression triggered by growth at elevated CO2 can help rebalance endogenous protein expression and/or increase foreign protein production in chloroplast-engineered tobacco.


2014 ◽  
Vol 894 ◽  
pp. 311-315
Author(s):  
Xiao Yi Jia ◽  
Yu Tian Lin ◽  
Hui Bin Lin ◽  
Ling Gao ◽  
Jian Qun Lin ◽  
...  

Fermentation process using recombinant strain for production of recombinant protein is widely used in commercialization of the biotechnologies. The continuous stirred tank reactor (CSTR) is a typical microbial cultivation method, has the major advantage of high productivity. Mathematical modeling and simulation is useful for analysis and optimization of the CSTR fermentation process. Most of the mathematical models developed for CSTR are black box models without information of the intracellular dynamics and regulations. In this research, a mathematical model is built based on gene regulation for recombinant protein production using CSTR, and simulation is made using this model.


1992 ◽  
Vol 8 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Neslihan DelaCruz ◽  
Gregory F. Payne ◽  
Jeffrey M. Smith ◽  
Steven J. Coppella

Sign in / Sign up

Export Citation Format

Share Document