bioprocess development
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 68)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Benjamin Bayer ◽  
Mark Duerkop ◽  
Gerald Striedner ◽  
Bernhard Sissolak

Reliable process development is accompanied by intense experimental effort. The utilization of an intensified design of experiments (iDoE) (intra-experimental critical process parameter (CPP) shifts combined) with hybrid modeling potentially reduces process development burden. The iDoE can provide more process response information in less overall process time, whereas hybrid modeling serves as a commodity to describe this behavior the best way. Therefore, a combination of both approaches appears beneficial for faster design screening and is especially of interest at larger scales where the costs per experiment rise significantly. Ideally, profound process knowledge is gathered at a small scale and only complemented with few validation experiments on a larger scale, saving valuable resources. In this work, the transferability of hybrid modeling for Chinese hamster ovary cell bioprocess development along process scales was investigated. A two-dimensional DoE was fully characterized in shake flask duplicates (300 ml), containing three different levels for the cultivation temperature and the glucose concentration in the feed. Based on these data, a hybrid model was developed, and its performance was assessed by estimating the viable cell concentration and product titer in 15 L bioprocesses with the same DoE settings. To challenge the modeling approach, 15 L bioprocesses also comprised iDoE runs with intra-experimental CPP shifts, impacting specific cell rates such as growth, consumption, and formation. Subsequently, the applicability of the iDoE cultivations to estimate static cultivations was also investigated. The shaker-scale hybrid model proved suitable for application to a 15 L scale (1:50), estimating the viable cell concentration and the product titer with an NRMSE of 10.92% and 17.79%, respectively. Additionally, the iDoE hybrid model performed comparably, displaying NRMSE values of 13.75% and 21.13%. The low errors when transferring the models from shaker to reactor and between the DoE and the iDoE approach highlight the suitability of hybrid modeling for mammalian cell culture bioprocess development and the potential of iDoE to accelerate process characterization and to improve process understanding.


2021 ◽  
Author(s):  
Niels Krausch ◽  
Jong Woo Kim ◽  
Sergio Lucia ◽  
Sebastian Gross ◽  
Tilman Barz ◽  
...  

Bioprocess development is commonly characterized by long development times, especially in the early screening phase. After promising candidates have been pre-selected in screening campaigns, an optimal operating strategy has to be found and verified under conditions similar to production. Cultivating cells with pulse-based feeding and thus exposing them to oscillating feast and famine phases has shown to be a powerful approach to study microorganisms closer to industrial bioreactor conditions. In view of the large number of strains and the process conditions to be tested, high-throughput cultivation systems provide an essential tool to sample the large design space in short time. We have recently presented a comprehensive platform, consisting of two liquid handling stations coupled with a model-based experimental design and operation framework to increase the efficiency in High Throughput bioprocess development. Using calibrated macro-kinetic growth models, the platform has been successfully used for the development of scale-down fed-batch cultivations in parallel mini-bioreactor systems. However, it has also been shown that parametric uncertainties in the models can significantly affect the prediction accuracy and thus the reliability of optimized cultivation strategies. To tackle this issue, we implemented a multi-stage Model Predictive Control (MPC) strategy to fulfill the experimental objectives under tight constraints despite the uncertainty in the parameters and the measurements. Dealing with uncertainties in the parameters is of major importance, since constraint violation would easily occur otherwise, which in turn could have adverse effects on the quality of the heterologous protein produced. Multi-stage approaches build up scenario tree, based on the uncertainty that can be encountered and computing optimal inputs that satisfy the constrains despite of such uncertainties. Using the feedback information gained through the evolution along the tree, the control approach is significantly more robust than standard MPC approaches without being overly conservative. We show in this study that the application of multi-stage MPC can increase the number of successful experiments, by applying this methodology to a mini-bioreactor cultivation operated in parallel.


2021 ◽  
Vol 8 (11) ◽  
pp. 156
Author(s):  
Christopher Taylor ◽  
Lukas Marschall ◽  
Marco Kunzelmann ◽  
Michael Richter ◽  
Frederik Rudolph ◽  
...  

Maximizing the value of each available data point in bioprocess development is essential in order to reduce the time-to-market, lower the number of expensive wet-lab experiments, and maximize process understanding. Advanced in silico methods are increasingly being investigated to accomplish these goals. Within this contribution, we propose a novel integrated process model procedure to maximize the use of development data to optimize the Stage 1 process validation work flow. We generate an integrated process model based on available data and apply two innovative Monte Carlo simulation-based parameter sensitivity analysis linearization techniques to automate two quality by design activities: determining risk assessment severity rankings and establishing preliminary control strategies for critical process parameters. These procedures are assessed in a case study for proof of concept on a candidate monoclonal antibody bioprocess after process development, but prior to process characterization. The evaluation was successful in returning results that were used to support Stage I process validation milestones and demonstrated the potential to reduce the investigated parameters by up to 24% in process characterization, while simultaneously setting up a strategy for iterative updates of risk assessments and process controls throughout the process life-cycle to ensure a robust and efficient drug supply.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Edwin Hlangwani ◽  
Wesley Doorsamy ◽  
Janet Adeyinka Adebiyi ◽  
Lanrewaju Ibrahim Fajimi ◽  
Oluwafemi Ayodeji Adebo

AbstractBioprocess development for umqombothi (a South African traditional beer) as with other traditional beer products can be complex. As a result, beverage bioprocess development is shifting towards new systematic protocols of experimentation. Traditional optimization methods such as response surface methodology (RSM) require further comparison with a relevant machine learning system. Artificial neural network (ANN) is an effective non-linear multivariate tool in bioprocessing, with enormous generalization, prediction, and validation capabilities. ANN bioprocess development and optimization of umqombothi were done using RSM and ANN. The optimum condition values were 1.1 h, 29.3 °C, and 25.9 h for cooking time, fermentation temperature, and fermentation time, respectively. RSM was an effective tool for the optimization of umqombothi’s bioprocessing parameters shown by the coefficient of determination (R2) closer to 1. RSM significant parameters: alcohol content, total soluble solids (TSS), and pH had R2 values of 0.94, 0.93, and 0.99 respectively while the constructed ANN significant parameters: alcohol content, TSS, and viscosity had R2 values of 0.96, 0.96, and 0.92 respectively. The correlation between experimental and predicted values suggested that both RSM and ANN were suitable bioprocess development and optimization tools.


Author(s):  
Laura Walls ◽  
José Martinez ◽  
E. Antonio del Rio Chanona ◽  
Leonardo Rios Solis

Recent technological advancements in synthetic and systems biology have enabled the construction of microbial cell factories expressing diverse heterologous pathways in unprecedentedly short time scales. However, the translation of such laboratory scale breakthroughs to industrial bioprocesses remains a major bottleneck. In this study, an accelerated bioprocess development approach was employed to optimize the biosynthetic pathway of the blockbuster chemotherapy drug, Taxol. Statistical design of experiments approaches were coupled with an industrially relevant high-throughput microbioreactor system to optimize production of key Taxol intermediates, Taxadien-5α-ol and Taxadien-5α-yl-acetate, in engineered yeast cell factories. The optimal factor combination was determined via data driven statistical modelling and validated in 1L bioreactors leading to a 2.1-fold improvement in taxane production compared to a typical defined media. Elucidation and mitigation of a nutrient limitation enhanced product titers a further two-fold and titers of the critical Taxol precursors, Taxadien-5α-ol and Taxadien-5α-yl-acetate were improved to 34 and 11 mg/L, representing a three-fold improvement compared to the highest literature titers in S. cerevisiae. Comparable titers were obtained when the process was scaled up a further five-fold using 5 L bioreactors. The results of this study highlight the benefits of a holistic design of experiments guided approach to expedite early stage bioprocess development.


Sign in / Sign up

Export Citation Format

Share Document