Some observations on peripheral venous pressure using a non-invasive technique: A preliminary report

1975 ◽  
Vol 62 (4) ◽  
pp. 259-263 ◽  
Author(s):  
H. Gaylis
2021 ◽  
Vol 75 (2) ◽  
pp. 125-133
Author(s):  
Soňa Franková ◽  
Jan Šperl

Portal hypertension represents a wide spectrum of complications of chronic liver diseases and may present by ascites, oesophageal varices, splenomegaly, hypersplenism, hepatorenal and hepatopulmonary syndrome or portopulmonary hypertension. Portal hypertension and its severity predicts the patient‘s prognosis: as an invasive technique, the portosystemic gradient (HPVG – hepatic venous pressure gradient) measurement by hepatic veins catheterisation has remained the gold standard of its assessment. A reliable, non-invasive method to assess the severity of portal hypertension is of paramount importance; the patients with clinically significant portal hypertension have a high risk of variceal bleeding and higher mortality. Recently, non-invasive methods enabling the assessment of liver stiffness have been introduced into clinical practice in hepatology. Not only may these methods substitute for liver biopsy, but they may also be used to assess the degree of liver fibrosis and predict the severity of portal hypertension. Nowadays, we can use the quantitative elastography (transient elastography, point shear-wave elastrography, 2D-shear-wave elastography) or magnetic resonance imaging. We may also assess the severity of portal hypertension based on the non-invasive markers of liver fibrosis (i.e. ELF test) or estimate clinically signifi cant portal hypertension using composite scores (LSPS – liver spleen stiff ness score), based on liver stiffness value, spleen diameter and platelet count. Spleen stiffness measurement is a new method that needs further prospective studies. The review describes current possibilities of the non-invasive assessment of portal hypertension and its severity.


1987 ◽  
Vol 2 (1) ◽  
pp. 47-51 ◽  
Author(s):  
J.P. Barroy ◽  
D. Munck ◽  
E. Paturiaux ◽  
M. Goldstein

Mercury strain-gauge plethysmography venous mode is a non-invasive technique for exploration of the haemodynamics of the extremities. The plethysmographic parameters used are: (1) the venous inflow (in ml/100 ml/min); (2) the venous outflow (in ml/100 ml/min); (3) the venous capacity in ml/100ml; (4) the venous distensibility index in ml/100 ml/ mmHg; and (5) the venous pressure measured by ‘hysteresis curve’. This method permits us to analyse the venous haemodynamics of both extremities simultaneously (the normal limb serving as the control), to obtain a precise diagnosis and to appreciate the efficacy of treatment at follow-up. The aetiology of the swollen limb can be precisely identified in 95% of the studied cases: oedema in superficial venous insufficiency, oedema in the deep venous insufficiency, oedema of inflammatory origin, oedema in the arterial insufficiency, oedema of cardiac origin, lymphoedema. During the last 3 years, we have followed up 580 patients with this method.


2016 ◽  
Vol 25 (4) ◽  
pp. 525-532 ◽  
Author(s):  
Monica Lupșor-Platon ◽  
Radu Badea ◽  
Mirela Gersak ◽  
Anca Maniu ◽  
Ioana Rusu ◽  
...  

There has been great interest in the development of non-invasive techniques for the diagnosis of liver fibrosis in chronic liver diseases, including ultrasound elastographic methods. Some of these methods have already been adequately studied for the non-invasive assessment of diffuse liver diseases. Others, however, such as two-dimensional Shear Wave Elastography (SWE), of more recent appearance, have yet to be validated and some aspects are for the moment incompletely elucidated. This review discusses some of the aspects related to two-dimensional SWE: the examination technique, the examination performance indicators, intra and interobserver agreement and clinical applications. Recommendations for a high-quality examination technique are formulated. Key words:  –  –  – Two-dimensional Shear Wave Elastography. Abbreviations: 2D- SWE: Two-dimensional Shear Wave Elastography; 3D- SWE: Three-dimensional Shear Wave Elastography; AUROC: area under the receiver operating characteristic curves; ARFI Acoustic Radiation Force Impulse Elastography; EFSUMB: European Federation of Societies for Ultrasound in Medicine and Biology; HVPG: hepatic venous pressure gradient; LS: liver stiffness; LR: likelihood ratio; NPV: negative predictive value; PPV: positive predictive value; ROI: region of interest; RT-E: Real Time-Elastography; Se: sensitivity; Sp: specificity; TE: Transient Elastography; US: ultrasound; VM: valid measurement; E: Young’s modulus


2014 ◽  
pp. 9-18
Author(s):  
Thi Linh Giang Truong ◽  
Vu Quoc Huy Nguyen

Background: Assessment of fetal health plays the most important role in prenatal care because of influence of the prediction of gestational outcome. One of the main aims of routine antenatal care is to identify the ‘ at risk ‘ fetus in order to apply clinical interventions which could results in reduced perinatal morbidity and mortality. Doppler ultrasound is a non invasive technique whereby the movement of blood is studied by detecting the change in frequence of reflected sound, Doppler blood flow velocity waves form of fetal side (umbilical artery, middle cerebral artery ...) and maternal side ( uterine arteries) are discussed and monograms for routine practice are presented. Recently this method is important tool for qualifying high risk pregnancies and help early forecasts the health of the babies and mothers disorder. Doppler sonography in obstetrics is a widely accepted functional method of examining the prediction of gestational outcome. Key words: Doppler, umbilical artery, middle cerebral artery, uterine arteries


Sign in / Sign up

Export Citation Format

Share Document