Quantification of rosiglitazone in rat plasma and tissues via LC‐MS/MS ‐ method development, validation, and its application in pharmacokinetic and tissue distribution studies

2022 ◽  
Author(s):  
Kusuma Kumari Garikapati ◽  
Ammu V. V. V. Ravi Kiran ◽  
Praveen Thaggikuppe Krishnamurthy ◽  
Narenderan S. T ◽  
Babu. B ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-12 ◽  
Author(s):  
Dahu Liang ◽  
Zijing Wu ◽  
Yanhao Liu ◽  
Chao Li ◽  
Xianghong Li ◽  
...  

Schisandrol B, a lignan isolated from dried Schisandra chinensis fruits, has been shown to exhibit hepatoprotective, cardioprotective, renoprotective, and memory-enhancing properties. This study sought to design a sensitive and efficient HPLC-MS/MS approach to measuring Schisandrol B levels in rat plasma and tissues in order to assess the pharmacokinetics, oral bioavailability, and tissue distributions of this compound in vivo. For this analysis, bifendate was chosen as an internal standard (IS). A liquid-liquid extraction (LLE) approach was employed for the preparation of samples that were subsequently separated with an Agilent ZORBAX Eclipse XDB-C18 (4.6 × 150 mm, 5 μm) column with an isocratic mobile phase consisting of methanol and water containing 5 mM ammonium acetate and 0.1% formic acid (90 : 10, v/v). A linear calibration curve was obtained over the 5–2000 ng/mL and 1–1000 ng/mL ranges for plasma samples and tissue homogenates, respectively. This established method was then successfully applied to investigate the pharmacokinetics, oral bioavailability, and tissue distributions of Schisandrol B in Sprague-Dawley (SD) rats that were intravenously administered 2 mg/kg of Schisandrol B monomer, intragastrically administered Schisandrol B monomer (10 mg/kg), or intragastrically administered 6 mL/kg SCE (equivalent to 15 mg/kg Schisandrol B monomer). The oral absolute bioavailability of Schisandrol B following intragastric Schisandrol B monomer and SCE administration was approximately 18.73% and 68.12%, respectively. Tissue distribution studies revealed that Schisandrol B was distributed throughout several tested tissues, with particular accumulation in the liver and kidneys. Our data represent a valuable foundation for future studies of the pharmacologic and biological characteristics of Schisandrol B.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Shunjun Xu ◽  
Jiejing Yu ◽  
Jingjing Zhan ◽  
Liu Yang ◽  
Longgang Guo ◽  
...  

Icariin is one of the predominant flavonoids contained in Herba Epimedii (Yin-yang-huo in Chinese), a well-known Chinese medicine for the treatment of cancers and immune system diseases. Although Herba Epimedii has been widely used in China and there are so many and various research reports on the herbal drug and its main flavones, very limited data is available on the tissue distribution and biotransformation of icariin. In the present study, a liquid chromatographic method combined with electrospray ionization tandem mass spectrometry was developed to quantify the concentration of icariin in rat plasma and various tissues collected at different time points after oral administration of the total flavonoid extract of Herba Epimedii at a dose of 0.69 g/kg (corresponding to 42 mg/g icariin). Biological samples were processed by simple protein precipitation. Genistein was chosen as internal standard. The method was successfully applied to plasma pharmacokinetic and tissue distribution studies of icariin in rat. As a result, it was worth noting that the tissue distribution characteristics of icariin exhibited a significant gender difference. Moreover, in vivo metabolism of icariin was also investigated. A total of 11 potential metabolites were found in rat feces collected in different time periods after oral and intramuscular administration of icariin. In vivo metabolic pathways were involved in hydrolysis, demethylation, oxidation, and conjugation. The preclinical data would be useful for fully understanding in vivo disposition of this compound and interpreting the mechanism of its biological response.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qianru Feng ◽  
Shunjun Xu ◽  
Jiejing Yu ◽  
Shuai Sun ◽  
Liu Yang

A simple, sensitive, and specific liquid chromatography tandem mass-spectrometric method was developed and validated for the determination of epimedin B in rat plasma and tissue samples. After being processed with a protein precipitation method, these samples were separated on an Agilent Eclipse XDB-C18 column with an isocratic mobile phase consisting of acetonitrile and 0.1% formic acid aqueous solution (32 : 68, v/v). The calibration curve of epimedin B was linear over the concentration range from 1 to 500 ng/mL in plasma and tissue homogenate. The method was then applied to pharmacokinetic and tissue distribution studies after a single oral administration of Herba Epimedii extract to SD rats. Results showed that epimedin B reached the plasma peak concentration at 0.4 h and the terminal elimination half-life was 1.6 h in rat plasma, and the plasma area under the curve from time zero to infinity (AUC0–∞) was 14.35 μg/L·h. The concentration distribution of epimedin B in rat tissue was in the following order: liver > ovary > womb > lung > kidney > spleen > heart > brain, indicating that the compound could be widely distributed in rat, and the reproductive system may be the principal target of epimedin B for female rat.


2021 ◽  
Vol 15 (1) ◽  
pp. 52
Author(s):  
Xiuqing Gao ◽  
Robert Y. L. Tsai ◽  
Jing Ma ◽  
Yang Wang ◽  
Xiaohua Liu ◽  
...  

Oxaliplatin (OXP), a third-generation platinum-based chemotherapy drug, was often indirectly analyzed via total platinum by an ICP-MS because it was difficult to directly quantify using an LC-MS/MS method, due to its instability, bad column separability and severe MS signal inhibition. Here, we developed and validated a specific, sensitive and reproducible LC-MS/MS method for the quantification of OXP itself in rat plasma and tongue tissue on a SCIEX 4000 QTRAP® MS/MS system equipped with a Phenomenex Lux 5u Cellulose-1 column (250 × 4.6 mm, 5 μm). This method was validated at the lower limit of detection (LOD) and the lower limit of quantitation (LLOQ) of 5 ng/mL and 10 ng/mL, with linearity of 10–5000 ng/mL (r2 > 0.99) and 10–2500 ng/mL (r2 > 0.99), in rat plasma and tongue homogenates, respectively. The intra- and inter-day precision (CV%) and accuracy (RE%) were within 15% for LLOQ, low-, medium- and high-quality control samples. The mean extraction recoveries were around 50% and 80% for plasma and tongue homogenates, respectively. This assay was successfully applied to pharmacokinetics study following intravenous administration of OXP, as well as tongue tissue distribution after 1 h and 4 h of a novel oral mucosal patch application.


Sign in / Sign up

Export Citation Format

Share Document