scholarly journals Determination of Oxaliplatin by a UHPLC-MS/MS Method: Application to Pharmacokinetics and Tongue Tissue Distribution Studies in Rats

2021 ◽  
Vol 15 (1) ◽  
pp. 52
Author(s):  
Xiuqing Gao ◽  
Robert Y. L. Tsai ◽  
Jing Ma ◽  
Yang Wang ◽  
Xiaohua Liu ◽  
...  

Oxaliplatin (OXP), a third-generation platinum-based chemotherapy drug, was often indirectly analyzed via total platinum by an ICP-MS because it was difficult to directly quantify using an LC-MS/MS method, due to its instability, bad column separability and severe MS signal inhibition. Here, we developed and validated a specific, sensitive and reproducible LC-MS/MS method for the quantification of OXP itself in rat plasma and tongue tissue on a SCIEX 4000 QTRAP® MS/MS system equipped with a Phenomenex Lux 5u Cellulose-1 column (250 × 4.6 mm, 5 μm). This method was validated at the lower limit of detection (LOD) and the lower limit of quantitation (LLOQ) of 5 ng/mL and 10 ng/mL, with linearity of 10–5000 ng/mL (r2 > 0.99) and 10–2500 ng/mL (r2 > 0.99), in rat plasma and tongue homogenates, respectively. The intra- and inter-day precision (CV%) and accuracy (RE%) were within 15% for LLOQ, low-, medium- and high-quality control samples. The mean extraction recoveries were around 50% and 80% for plasma and tongue homogenates, respectively. This assay was successfully applied to pharmacokinetics study following intravenous administration of OXP, as well as tongue tissue distribution after 1 h and 4 h of a novel oral mucosal patch application.

2007 ◽  
Vol 90 (3) ◽  
pp. 720-724
Author(s):  
Sevgi Tatar Ulu

Abstract A sensitive and selective high-performance liquid chromatographic method has been developed for the determination of tianeptine (Tia) in tablets. The method is based on derivatization of Tia with 4-chloro-7-nitrobenzofurazan (NBD-Cl). A mobile phase consisting of acetonitrile10 mM orthophosphoric acid (pH 2.5; 77 + 23) was used at a flow rate of 1 mL/min on a C18 column. The Tia-NBD derivative was monitored using a fluorescence detector, with emission set at 520 nm and excitation at 458 nm. Gabapentin was selected as an internal standard. Linear calibration graphs were obtained in the concentration range of 45300 ng/mL. The lower limit of detection (LOD) was 10 ng/mL at a signal-to-noise ratio of 4. The lower limit of quantitation (LOQ) was 45 ng/mL. The relative standard values for intra- and interday precision were <0.46 and <0.57%, respectively. The recovery of the drug samples ranged between 98.89 and 99.85%. No chromatographic interference from the tablet excipients was found. The proposed method was validated in terms of precision, robustness, recovery, LOD, and LOQ. All the validation parameters were within the acceptance range. The proposed method was applied for the determination of Tia in commercially available tablets. The results were compared with those obtained by an ultraviolet spectrophotometric method using t- and F-tests.


Author(s):  
A. L. Podolko ◽  
P. O. Bochkov ◽  
G. B. Kolyvanov ◽  
A. A. Litvin ◽  
O. G. Gribakina ◽  
...  

The technique of quantitative determination of GZK-111 and CPG compounds in rat blood plasma has been developed. The analysis was carried out using the combined method of high-performance liquid chromatography with mass spectrometric detection. The method was linear in the concentration range of 25-1000 ng/ml for both compounds. Percentage of GZK-111 extraction from rat blood plasma was 57.8 %. The lower limit of detection for GZK- 111 compound was 25 ng/ml. Percentage of extraction of CPG compound was 42.5 %. The lower limit of detection of CPG compound was also 25 ng/ml.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qianru Feng ◽  
Shunjun Xu ◽  
Jiejing Yu ◽  
Shuai Sun ◽  
Liu Yang

A simple, sensitive, and specific liquid chromatography tandem mass-spectrometric method was developed and validated for the determination of epimedin B in rat plasma and tissue samples. After being processed with a protein precipitation method, these samples were separated on an Agilent Eclipse XDB-C18 column with an isocratic mobile phase consisting of acetonitrile and 0.1% formic acid aqueous solution (32 : 68, v/v). The calibration curve of epimedin B was linear over the concentration range from 1 to 500 ng/mL in plasma and tissue homogenate. The method was then applied to pharmacokinetic and tissue distribution studies after a single oral administration of Herba Epimedii extract to SD rats. Results showed that epimedin B reached the plasma peak concentration at 0.4 h and the terminal elimination half-life was 1.6 h in rat plasma, and the plasma area under the curve from time zero to infinity (AUC0–∞) was 14.35 μg/L·h. The concentration distribution of epimedin B in rat tissue was in the following order: liver > ovary > womb > lung > kidney > spleen > heart > brain, indicating that the compound could be widely distributed in rat, and the reproductive system may be the principal target of epimedin B for female rat.


2013 ◽  
Vol 634-638 ◽  
pp. 1586-1590
Author(s):  
Su Fang Wang ◽  
Shou Jie Zhang ◽  
Chun Hong Dong ◽  
Guo Qing Wang ◽  
Jun Feng Guo ◽  
...  

A method for simultaneous determination of residuals of four herbicides and pesticides, simazine, carboxin, diflubenzuron and rotenone, in Chinese green tea was developed. In the proposed method, the tea powder was placed in a centrifuge tube with a plug, extracted in saturated aqueous sodium chloride solution and acetonitrile, agitated using vortex oscillator, and then centrifuged 5 min at 4000 rpm. The supernatant solution was purified by primary secondary amine (PSA) sorbent, C18 power, and graphitized carbon black powder, respectively. Then the purified extracts were dissolved with acetonitrile:0.1% formic acid aqueous solution (40:60, V/V) and agitated, filtered using a syringe with 0.22 μm nylon filter prior to UPLC-MS/MS analysis. The UPLC analysis was performed on an ACQUITY UPLC® HSS T3 column (2.1 mm×100 mm, 1.8 µm), using acetonitrile-0.1% formic acid as mobile phase with the flow rate as 0.3 mL•min-1. Injection volume was 10 µL. Positive ionization mode was applied, and the ions were monitored in the multiple reaction monitoring (MRM) mode with curtain gas 0.069 MPa, collision gas 0.052 MPa, ESI ion spray voltage 5000 V, temperature 550 °C, nebulizer gas 0.24 MPa, and turbo gas 0.28 MPa. The limit of detection (LOD) and limit of quantitation (LOQ) of the proposed method are 1 μg•kg-1and 5 μg•kg-1, respectively. The average recoveries of the four pesticides at 10, 20, and 50 µg•kg-1spiking levels range from 77.4% to 95.3%. TheSupersSuperscript textcript textrelative standard deviation (RSD) (n=6) range form 11.83% to 4.52%.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yun Wang ◽  
Xinrui Xing ◽  
Yan Cao ◽  
Liang Zhao ◽  
Sen Sun ◽  
...  

Yin Chen Hao Tang (YCHT) is one of the most famous hepatoprotective herbal formulas in China, but its pharmacokinetic investigation in model rats has been rarely conducted. In this study, the hepatic injury model was caused by intraperitoneal injections of carbon tetrachloride (CCl4), and YCHT was orally administered to the model and normal rats. An ultrahigh performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was established to analyze the plasma pharmacokinetics of eight major bioactive ingredients from YCHT in both the normal and liver injured rats. The calibration curves presented good linearity (r > 0.9981) in the concentration range. The relative standard deviation (RSD%) of inter- and intraday precision was within 9.55%, and the accuracy (RE%) ranged from -10.72% to 2.46%. The extraction recovery, matrix effect, and stability were demonstrated to be within acceptable ranges. The lower limit of detection (LLOD) and lower limit of quantitation (LLOQ) were around 0.1 ng/mL and 0.5 ng/mL, respectively, which were much lower than those in other related researches. Results reveal that there are significant differences in the pharmacokinetics of scoparone, geniposide, rhein, aloe-emodin, physcion, and chrysophanol in hepatic injured rats as compared to those in control except for scopoletin and emodin. Our experimental results provide a meaningful reference for the clinical dosage of YCHT in treating liver disorders, and the improvement of LLOD and LLOQ can also broaden the range of our method’s application, which is very suitable for quantitating these eight compounds with low levels.


Author(s):  
Birva A. Athavia ◽  
Zarna R. Dedania ◽  
Ronak R. Dedania ◽  
S. M. Vijayendra Swamy ◽  
Chetana B. Prajapati

Objective: The aim and objective of this study was to develop and validate Stability Indicating HPLC method for determination of Vilazodone Hydrochloride.Methods: The method was carried out on a Phenomenex, C18 (250x4.6 mm, 5 µm) Column using a mixture of Acetonitrile: Water (50:50v/v), pH adjusted to 3.3 with Glacial Acetic Acid for separation. The flow rate was adjusted at 1 ml/min and Detection was carried out at 240 nm.Results: The retention time of vilazodone hydrochloride was found to be 2.3 min. The calibration curve was found to be linear in the range 25-75µg/ml with a correlation coefficient (R2=0.996). The limit of detection and limit of quantitation were found to be 4.78µg/ml and 14.48µg/ml respectively. The % recovery of vilazodone hydrochloride was found to be in the range of 98.21±0.08 % to 99.07±0.64%. The proposed method was successfully applied for the estimation of vilazodone hydrochloride in marketed tablet formulation.Vilazodone Hydrochloride was subjected to forced degradation under Acidic, Alkaline, Oxidation, Dry Heat and Photolytic degradation conditions. Vilazodone hydrochloride showed 3.12% degradation under acidic condition, 4.78% under alkaline condition, 7.8% under oxidation condition, 3.53% under dry heat condition and 4.9% under photolytic condition.Acid degradation impurity was identified and characterised by LC-MS/MS was found to be 1-(4-Penten-1-yl) piperazine having molecular weight 154.253 (m/z 155.08) and Molecular Formula C9H18N2.Conclusion: A simple, precise, rapid and accurate Stability Indicating HPLC method has been developed and validated for the determination of Vilazodone Hydrochloride in presence of its degradation products as per the ICH Guidelines. 


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


Author(s):  
Abolfazl Darroudi ◽  
Saeid Nazari ◽  
Seyed Ali Marashi ◽  
Mahdi Karimi-Nazarabad

Abstract An accurate, rapid, simple, and novel technique was developed to determine simvastatin (SMV). In this research, a screen-printed electrode (SPE) was deposited with graphene oxide (GO) and sodium dodecyl sulfate (SDS), respectively. For the first time, the handmade modified SPE measured the SMV by differential pulse voltammetry (DPV) with high sensitivity and selectivity. The results of cyclic voltammetry indicated the oxidation irreversible process of SMV. Various parameters (pH, concentration, scan rate, support electrolyte) were performed to optimize the conditions for the determination of SMV. Under the optimum experiment condition of 0.1 M KNO3 as support electrolyte and pH 7.0, the linear range was achieved for SMV concentration from 1.8 to 36.6 µM with a limit of detection (LOD), and a limit of quantitation (LOQ) of 0.06 and 1.8 µM, respectively. The proposed method was successfully utilized to determine SMV in tablets and urine samples with a satisfactory recovery in the range of 96.2 to 103.3%.


Sign in / Sign up

Export Citation Format

Share Document