scholarly journals Gaze and viewing angle influence visual stabilization of upright posture

2011 ◽  
Vol 1 (1) ◽  
pp. 19-25 ◽  
Author(s):  
K.I. Ustinova ◽  
J. Perkins
Author(s):  
David Weibel ◽  
Daniel Stricker ◽  
Bartholomäus Wissmath ◽  
Fred W. Mast

Like in the real world, the first impression a person leaves in a computer-mediated environment depends on his or her online appearance. The present study manipulates an avatar’s pupil size, eyeblink frequency, and the viewing angle to investigate whether nonverbal visual characteristics are responsible for the impression made. We assessed how participants (N = 56) evaluate these avatars in terms of different attributes. The findings show that avatars with large pupils and slow eye blink frequency are perceived as more sociable and more attractive. Compared to avatars seen in full frontal view or from above, avatars seen from below were rated as most sociable, self-confident, and attractive. Moreover, avatars’ pupil size and eyeblink frequency escape the viewer’s conscious perception but still influence how people evaluate them. The findings have wide-ranging applied implications for avatar design.


Author(s):  
V.R. Kuchma ◽  
M.I. Stеpanova ◽  
T.V. Shumkova ◽  
I.E. Aleksandrova

For the purpose of the development of novel approaches during the commission stage, the hygienic assessment of conditions of training in specially constructed innovative building of SKOLKOVO International Gymnasium was performed. Hygienic examination of innovative architectural and planning solutions, learning conditions and hygienic modeling of the optimal placement of furniture and equipment in multi-faceted educational facilities with panoramic glazing made it possible to predict the provision of the gymnasium with an optimal level of sanitary and epidemiological well-being of students. This is achieved by the innovative layout of the gymnasium building and its territory. Hygienic specification of zoning of both buildings and premises of the educational institution, include the requirements to satisfy the hygienic criteria on children education, motor activity, organization of proper nutrition, and using the building as a center for family leisure. Hygienic modeling of educational furniture and equipment provides optimal conditions (viewing angle) for visual work of students in all multifaceted classes. The obtained data are the basis for amendments to the state sanitary and epidemiological rules and regulations in the field of organization of education and upbringing of children.


2019 ◽  
pp. 32-35
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

In this article we consider a problem of reliable modeling of echo signals and angle noise of distributed objects using twodimensional geometric models with random statistically unrelated signals. The conditions that ensure the invariance of distribution parameters of the angle noise generated by an arbitrary N-point configuration of a two-dimensional geometric model are obtained. In the particular case of a model whose emitters are supplied with signals of equal power, the conditions of invariance are reduced to the location of the model points on the plane in the form of a regular polygon. These results can be used to synthesize mathematical models used for simulating reflections from distributed objects and for developing a hardware-software complex for the simulation of electromagnetic fields reflected from the Earth surface, atmospheric inhomogeneities, the sea surface, etc.


2021 ◽  
pp. 1-9
Author(s):  
Hu Dou ◽  
Mei Chen ◽  
Ding Li ◽  
Gang Yu ◽  
Yu-Bao Sun

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 204
Author(s):  
Di Wang ◽  
Yi-Wei Zheng ◽  
Nan-Nan Li ◽  
Qiong-Hua Wang

In this paper, a holographic system to suppress the speckle noise is proposed. Two spatial light modulators (SLMs) are used in the system, one of which is used for beam shaping, and the other is used for reproducing the image. By calculating the effective viewing angle of the reconstructed image, the effective hologram and the effective region of the SLM are calculated accordingly. Then, the size of the diffractive optical element (DOE) is calculated accordingly. The dynamic DOEs and effective hologram are loaded on the effective regions of the two SLMs, respectively, while the wasted areas of the two SLMs are performed with zero-padded operations. When the laser passes through the first SLM, the light can be modulated by the effective DOEs. When the modulated beam illuminates the second SLM which is loaded with the effective hologram, the image is reconstructed with better quality and lower speckle noise. Moreover, the calculation time of the hologram is reduced. Experiments indicate the validity of the proposed system.


2021 ◽  
Vol 13 (10) ◽  
pp. 1958
Author(s):  
Shelly Elbaz ◽  
Efrat Sheffer ◽  
Itamar M. Lensky ◽  
Noam Levin

Discriminating between woody plant species using a single image is not straightforward due to similarity in their spectral signatures, and limitations in the spatial resolution of many sensors. Seasonal changes in vegetation indices can potentially improve vegetation mapping; however, for mapping at the individual species level, very high spatial resolution is needed. In this study we examined the ability of the Israel/French satellite of VENμS and other sensors with higher spatial resolutions, for identifying woody Mediterranean species, based on the seasonal patterns of vegetation indices (VIs). For the study area, we chose a site with natural and highly heterogeneous vegetation in the Judean Mountains (Israel), which well represents the Mediterranean maquis vegetation of the region. We used three sensors from which the indices were derived: a consumer-grade ground-based camera (weekly images at VIS-NIR; six VIs; 547 individual plants), UAV imagery (11 images, five bands, seven VIs) resampled to 14, 30, 125, and 500 cm to simulate the spatial resolutions available from some satellites, and VENμS Level 1 product (with a nominal spatial resolution of 5.3 m at nadir; seven VIs; 1551 individual plants). The various sensors described seasonal changes in the species’ VIs at different levels of success. Strong correlations between the near-surface sensors for a given VI and species mostly persisted for all spatial resolutions ≤125 cm. The UAV ExG index presented high correlations with the ground camera data in most species (pixel size ≤125 cm; 9 of 12 species with R ≥ 0.85; p < 0.001), and high classification accuracies (pixel size ≤30 cm; 8 species with >70%), demonstrating the possibility for detailed species mapping from space. The seasonal dynamics of the species obtained from VENμS demonstrated the dominant role of ephemeral herbaceous vegetation on the signal recorded by the sensor. The low variance between the species as observed from VENμS may be explained by its coarse spatial resolution (effective ground spatial resolution of 7.5) and its non-nadir viewing angle (29.7°) over the study area. However, considering the challenging characteristics of the research site, it may be that using a VENμS type sensor (with a spatial resolution of ~1 m) from a nadir point of view and in more homogeneous and dense areas would allow for detailed mapping of Mediterranean species based on their seasonality.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiang Li ◽  
Jianzheng Liu ◽  
Jessica Baron ◽  
Khoa Luu ◽  
Eric Patterson

AbstractRecent attention to facial alignment and landmark detection methods, particularly with application of deep convolutional neural networks, have yielded notable improvements. Neither these neural-network nor more traditional methods, though, have been tested directly regarding performance differences due to camera-lens focal length nor camera viewing angle of subjects systematically across the viewing hemisphere. This work uses photo-realistic, synthesized facial images with varying parameters and corresponding ground-truth landmarks to enable comparison of alignment and landmark detection techniques relative to general performance, performance across focal length, and performance across viewing angle. Recently published high-performing methods along with traditional techniques are compared in regards to these aspects.


Sign in / Sign up

Export Citation Format

Share Document