scholarly journals Modulation of the perforant path‐evoked potential in dentate gyrus as a function of intrahippocampal β ‐adrenoceptor agonist concentration in urethane‐anesthetized rat

2013 ◽  
Vol 4 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Rebecca L. Lethbridge ◽  
Susan G. Walling ◽  
Carolyn W. Harley



2008 ◽  
Vol 86 (5) ◽  
pp. 249-256 ◽  
Author(s):  
Takashi Kubota ◽  
Itsuki Jibiki ◽  
Akira Ishikawa ◽  
Tomomi Kawamura ◽  
Sonoko Kurokawa ◽  
...  

We previously found that 20 mg/kg clozapine i.p. potentiated the excitatory synaptic responses elicited in the dentate gyrus by single electrical stimulation of the perforant path in chronically prepared rabbits. We called this phenomenon clozapine-induced potentiation and proved that it was an NMDA receptor-mediated event. This potentiation is presumably related to clozapine’s clinical effect on negative symptoms and cognitive dysfunctions in schizophrenia. In the present study, to investigate the mechanisms underlying clozapine-induced potentiation, we examined whether extracellular dopamine and 5-HT levels changed during the potentiation by using a microdialysis technique in the dentate gyrus. The extracellular concentrations of dopamine and 5-HT levels were measured every 5 min during all experiments. Extracellular 5-HT levels did not change, but dopamine levels eventually increased significantly during clozapine-induced potentiation. The increase in the dopamine levels occurred almost simultaneously with the induction of clozapine-induced potentiation. These results suggest that clozapine-induced potentiation is at least partly attributable to a dopamine-mediated potentiation of excitatory synaptic transmission. The present study implies that such phenomena occur also in the perforant path–dentate gyrus pathway.



2001 ◽  
Vol 85 (6) ◽  
pp. 2509-2515 ◽  
Author(s):  
John Kilbride ◽  
Anthony M. Rush ◽  
Michael J. Rowan ◽  
Roger Anwyl

Inhibition of short-term plasticity by activation of presynaptic group II metabotropic glutamate receptors (group II mGluR) was investigated in the medial perforant path of the dentate gyrus in the hippocampus in vitro. Brief trains of stimulation (10 stimuli at 1–200 Hz) evoked short-term depression of field excitatory postsynaptic potentials (EPSPs). The steady-state level of depression, measured after 10 stimuli, was frequency dependent, increasing between 1 and 200 Hz. Activation of group II mGluR by the selective agonist LY354740 did not alter short-term depression evoked by frequencies up to 10 Hz, but did inhibit short-term depression evoked at higher frequencies in a frequency- and concentration-dependent manner. The time-averaged postsynaptic response (EPSP per unit time) was found to increase linearly with frequency up to ∼20 Hz. At higher frequencies, the response plateaued, thereby becoming independent of frequency. Frequencies above this were differentiated only during the transient postsynaptic response that accompanies changes in firing rates. Activation of presynaptically located group II mGluR increased the frequency at which the EPSP per unit time plateaued up to 30–50 Hz.



2004 ◽  
Vol 92 (6) ◽  
pp. 3385-3398 ◽  
Author(s):  
Laura Lee Colgin ◽  
Don Kubota ◽  
Fernando A. Brucher ◽  
Yousheng Jia ◽  
Erin Branyan ◽  
...  

Spontaneous negative-going potentials occurring at an average frequency of 0.7 Hz were recorded from the dentate gyrus of slices prepared from the temporal hippocampus of young adult rats. These events (here termed “dentate waves”) in several respects resembled the dentate spikes described for freely moving rats during immobile behaviors and slow-wave sleep. Action potentials were observed on the descending portion of the in vitro waves and, as expected from this, whole cell recordings established that the waves were composed of depolarizing currents. Dentate waves appeared to be locally generated within the granule cell layer and were greatly reduced by antagonists of AMPA-type glutamate receptors or by lesions to the entorhinal cortex. Simultaneous recordings indicated that the waves were often synchronized in the inner and outer blades of the dentate gyrus. Knife cuts through the perforant path and the commissural/associational system did not eliminate synchronization, leaving electrotonic propagation via gap junctions as its probable cause. In accord with this, cuts that separated the two blades of the dentate eliminated synchronization between them, and a compound that inhibits gap junctions reduced wave activity. Dentate waves were regularly accompanied by sharp waves in field CA3 and were reduced in size by the acetylcholinesterase inhibitor, physostigmine. It is hypothesized that dentate waves occur when spontaneous glutamate release from dentate afferents produces action potentials in neighboring granule cells that then summate electrotonically into a population event; once initiated, the waves propagate, again electrotonically, and thereby engage a significant portion of the granule cell population.





Sign in / Sign up

Export Citation Format

Share Document