Rheology of Enzyme Liquefied Corn Stover Slurries: The Effect of Solids Concentration on Yielding and Flow Behavior

2021 ◽  
Author(s):  
Ryan Szeto ◽  
Jonathan C. Overton ◽  
Antonio Freitas dos Santos ◽  
Clark Eby ◽  
Nathan S. Mosier ◽  
...  
2009 ◽  
Vol 160 (4) ◽  
pp. 1102-1115 ◽  
Author(s):  
M. R. Ehrhardt ◽  
T. O. Monz ◽  
T. W. Root ◽  
R. K. Connelly ◽  
C. T. Scott ◽  
...  

2016 ◽  
Vol 19 (0) ◽  
Author(s):  
Pedro Henrique Santos ◽  
Luiza Helena Meller da Silva ◽  
Antônio Manoel da Cruz Rodrigues ◽  
José Antonio Ribeiro de Souza

Summary The aim of this study was to evaluate the rheological behavior of malay apple, a traditional Amazonian fruit with high bioactive properties, at different temperatures and soluble solids concentrations. The experiments were carried out in a Brookfield R/S Plus rheometer with concentric cylinders geometry. Power Law, Herschel-Bulkley, Mizrahi-Berk, and Sisko rheological models were fitted to the experimental data. The malay apple juice (pulp and skin) showed a pseudoplastic behavior for all temperatures and concentrations with flow behavior indexes lower than 1. The temperature effect on the samples’ apparent viscosity was analyzed by the Arrhenius equation. The activation energy increased with a decrease in the soluble solids concentration, showing that the lower the concentration, the greater the temperature influence on the apparent viscosity. The soluble solids effect was described by the exponential equation. The exponential factor increased with the temperature increasing, showing that the higher the temperature, the greater the effect of the soluble solids concentration on samples’ apparent viscosity. Finally, a triparametric mathematical model combining temperature, concentration, and shear rate was proposed aiming to evaluate its effects on the samples’ apparent viscosity and has accurately adjusted to the data with high correlation index R2.


1973 ◽  
Vol 95 (1) ◽  
pp. 75-77
Author(s):  
Harley Y. Jennings

This paper describes our laboratory study of the flow behavior of aqueous hemalite slurries. Viscosity and flow data are given for slurries of up to 40 percent hematite by volume (76 percent by weight). These results show that solids concentration and particle size distribution have much more effect on flow than does temperature. These and supporting laboratory data are discussed in terms of practical problems in pipelining slurries.


2020 ◽  
Vol 117 (6) ◽  
pp. 619
Author(s):  
Rui Xu ◽  
Haitao Ling ◽  
Haijun Wang ◽  
Lizhong Chang ◽  
Shengtao Qiu

The transient multiphase flow behavior in a single-strand tundish during ladle change was studied using physical modeling. The water and silicon oil were employed to simulate the liquid steel and slag. The effect of the turbulence inhibitor on the slag entrainment and the steel exposure during ladle change were evaluated and discussed. The effect of the slag carry-over on the water-oil-air flow was also analyzed. For the original tundish, the top oil phase in the impact zone was continuously dragged into the tundish bath and opened during ladle change, forming an emulsification phenomenon. By decreasing the liquid velocities in the upper part of the impact zone, the turbulence inhibitor decreased considerably the amount of entrained slag and the steel exposure during ladle change, thereby eliminating the emulsification phenomenon. Furthermore, the use of the TI-2 effectively lowered the effect of the slag carry-over on the steel cleanliness by controlling the movement of slag droplets. The results from industrial trials indicated that the application of the TI-2 reduced considerably the number of linear inclusions caused by ladle change in hot-rolled strip coils.


Author(s):  
Elahe Mirabi ◽  
Nasrollahi Nazanin

<p>Designing urban facades is considered as a major factor influencing issues<br />such as natural ventilation of buildings and urban areas, radiations in the<br />urban canyon for designing low-energy buildings, cooling demand for<br />buildings in urban area, and thermal comfort in urban streets. However, so<br />far, most studies on urban topics have been focused on flat facades<br />without details of urban layouts. Hence, the effect of urban facades with<br />details such as the balcony and corbelling on thermal comfort conditions<br />and air flow behavior are discussed in this literature review. <strong>Aim</strong>: This<br />study was carried out to investigate the effective factors of urban facades,<br />including the effects of building configuration, geometry and urban<br />canyon’s orientation. <strong>Methodology and Results</strong>: According to the results,<br />the air flow behavior is affected by a wide range of factors such as wind<br />conditions, urban geometry and wind direction. Urban façade geometry<br />can change outdoor air flow pattern, thermal comfort and solar access.<br /><strong>Conclusion, significance and impact study</strong>: In particular, the geometry of<br />the facade, such as indentation and protrusion, has a significant effect on<br />the air flow and thermal behavior in urban facades and can enhance<br />outdoor comfort conditions. Also, Alternation in façade geometry can<br />affect pedestrians' comfort and buildings energy demands.</p>


1985 ◽  
Vol 39 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Tatsuo Nakano ◽  
Shuichi Nagato ◽  
Michihiro Nakura

Sign in / Sign up

Export Citation Format

Share Document