scholarly journals Reversing epigenetic repression of transposable elements for improving tumor immunogenicity

2022 ◽  
Author(s):  
Xi Wang ◽  
Qian Zhang ◽  
Xuetao Cao
Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 228 ◽  
Author(s):  
Yang Liu ◽  
Yousry A. El-Kassaby

Plant genomes are punctuated by repeated bouts of proliferation of transposable elements (TEs), and these mobile bursts are followed by silencing and decay of most of the newly inserted elements. As such, plant genomes reflect TE-related genome expansion and shrinkage. In general, these genome activities involve two mechanisms: small RNA-mediated epigenetic repression and long-term mutational decay and deletion, that is, genome-purging. Furthermore, the spatial relationships between TE insertions and genes are an important force in shaping gene regulatory networks, their downstream metabolic and physiological outputs, and thus their phenotypes. Such cascading regulations finally set up a fitness differential among individuals. This brief review demonstrates factual evidence that unifies most updated conceptual frameworks covering genome size, architecture, epigenetic reprogramming, and gene expression. It aims to give an overview of the impact that TEs may have on genome and adaptive evolution and to provide novel insights into addressing possible causes and consequences of intimidating genome sizes (20–30 Gb) in a taxonomic group, conifers.


2001 ◽  
Vol 25 (2) ◽  
pp. 169-179 ◽  
Author(s):  
Kime Turcotte ◽  
Sujatha Srinivasan ◽  
Thomas Bureau

Sign in / Sign up

Export Citation Format

Share Document