epigenetic silencing
Recently Published Documents


TOTAL DOCUMENTS

1066
(FIVE YEARS 172)

H-INDEX

83
(FIVE YEARS 10)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 127
Author(s):  
Adelaide Ohui Fierti ◽  
Michael Bright Yakass ◽  
Ernest Adjei Okertchiri ◽  
Samuel Mawuli Adadey ◽  
Osbourne Quaye

Epstein-Barr virus (EBV) is ubiquitous and carried by approximately 90% of the world’s adult population. Several mechanisms and pathways have been proposed as to how EBV facilitates the pathogenesis and progression of malignancies, such as Hodgkin’s lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, and gastric cancers, the majority of which have been linked to viral proteins that are expressed upon infection including latent membrane proteins (LMPs) and Epstein-Barr virus nuclear antigens (EBNAs). EBV expresses microRNAs that facilitate the progression of some cancers. Mostly, EBV induces epigenetic silencing of tumor suppressor genes, degradation of tumor suppressor mRNA transcripts, post-translational modification, and inactivation of tumor suppressor proteins. This review summarizes the mechanisms by which EBV modulates different tumor suppressors at the molecular and cellular levels in associated cancers. Briefly, EBV gene products upregulate DNA methylases to induce epigenetic silencing of tumor suppressor genes via hypermethylation. MicroRNAs expressed by EBV are also involved in the direct targeting of tumor suppressor genes for degradation, and other EBV gene products directly bind to tumor suppressor proteins to inactivate them. All these processes result in downregulation and impaired function of tumor suppressors, ultimately promoting malignances.


Author(s):  
Erna Yang ◽  
Wei Guan ◽  
Desheng Gong ◽  
Jieying Li ◽  
Caixia Han ◽  
...  

AbstractThe formation of the RUNX1-RUNX1T1 fusion protein, resulting from the t(8;21) translocation, is considered to be one of the initiating events of t(8;21) acute myeloid leukemia (AML). However, the mechanisms of the oncogenic mechanism of RUNX1-RUNX1T1 remain unclear. In this study, we found that RUNX1-RUNX1T1 triggers the heterochromatic silencing of UBXN8 by recognizing the RUNX1-binding sites and recruiting chromatin-remodeling enzymes to the UBXN8 promoter region. Decitabine, a specific inhibitor of DNA methylation, upregulated the expression of UBXN8 in RUNX1-RUNX1T1+ AML cell lines. Overexpression of UBXN8 inhibited the proliferation and colony-forming ability of and promoted cell cycle arrest in t(8;21) AML cell lines. Enhancing UBXN8 levels can significantly inhibit tumor proliferation and promote the differentiation of RUNX1-RUNX1T1+ cells in vivo. In conclusion, our results indicated that epigenetic silencing of UBXN8 via methylation of its promoter region mediated by the RUNX1-RUNX1T1 fusion protein contributes to the leukemogenesis of t(8;21) AML and that UBXN8 targeting may be a potential therapeutic strategy for t(8;21) AML.


2021 ◽  
pp. molcanres.0536.2021
Author(s):  
Jinqiang Zhang ◽  
Weina Chen ◽  
Wenbo Ma ◽  
Kyoungsub Song ◽  
Sean Lee ◽  
...  

2021 ◽  
Author(s):  
Anshuman Das ◽  
Madhuvanthi Vijayan ◽  
Eric M. Walton ◽  
V. Grace Stafford ◽  
David N. Fiflis ◽  
...  

The single-stranded DNA genome of adeno-associated viruses (AAV) undergoes second-strand synthesis and transcription in the host cell nucleus. While wild-type AAV genomes are naturally silenced upon integration into the host genome, recombinant AAV (rAAV) genomes typically provide robust expression of transgenes persisting as extrachromosomal DNA or episomes. Episomal DNA associating with host histones are subject to epigenetic modifications, although the mechanisms underlying such are not well understood. Here, we provide evidence that the double-stranded DNA binding protein NP220, in association with the human silencing hub (HUSH) complex, mediates transcriptional silencing of single-stranded as well as self-complementary rAAV genomes. In cells lacking NP220 or other components of the HUSH complex, AAV genome transcript levels are increased and correlate with a marked reduction in repressive H3K9 histone methylation marks. We also provide evidence that the AAV capsid (serotype) can profoundly influence NP220-mediated mediated silencing of packaged genomes, indicating potential role(s) for capsid-genome or capsid-host factor interactions in regulating epigenetic silencing of rAAV genomes. Importance Recombinant AAV vectors can enable long term gene expression in a wide variety of tissues. However, transgene silencing has been reported in some human gene therapy clinical trials. Here, we demonstrate the human silencing hub (HUSH) complex can suppress transcript formation from rAAV vector genomes by epigenetic modification of associated host histones. Further, the AAV capsid appears to play an important role in this pathway. We postulate that modulation of epigenetic pathways could help improve rAAV expression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Ting Yen ◽  
May Chien ◽  
Pei-Yi Wu ◽  
Chi-Chang Ho ◽  
Chun-Te Ho ◽  
...  

AbstractMicrosatellite-instable (MSI), a predictive biomarker for immune checkpoint blockade (ICB) response, is caused by mismatch repair deficiency (MMRd) that occurs through genetic or epigenetic silencing of MMR genes. Here, we report a mechanism of MMRd and demonstrate that protein phosphatase 2A (PP2A) deletion or inactivation converts cold microsatellite-stable (MSS) into MSI tumours through two orthogonal pathways: (i) by increasing retinoblastoma protein phosphorylation that leads to E2F and DNMT3A/3B expression with subsequent DNA methylation, and (ii) by increasing histone deacetylase (HDAC)2 phosphorylation that subsequently decreases H3K9ac levels and histone acetylation, which induces epigenetic silencing of MLH1. In mouse models of MSS and MSI colorectal cancers, triple-negative breast cancer and pancreatic cancer, PP2A inhibition triggers neoantigen production, cytotoxic T cell infiltration and ICB sensitization. Human cancer cell lines and tissue array effectively confirm these signaling pathways. These data indicate the dual involvement of PP2A inactivation in silencing MLH1 and inducing MSI.


2021 ◽  
Vol 15 ◽  
Author(s):  
Layne N. Rodden ◽  
Kaitlyn M. Gilliam ◽  
Christina Lam ◽  
David R. Lynch ◽  
Sanjay I. Bidichandani

Friedreich ataxia (FRDA) is typically caused by homozygosity for an expanded GAA triplet-repeat in intron 1 of the FXN gene. The expanded repeat induces repressive histone changes and DNA hypermethylation, which result in epigenetic silencing and FXN transcriptional deficiency. A class I histone deacetylase inhibitor (HDACi-109) reactivates the silenced FXN gene, although with considerable inter-individual variability, which remains etiologically unexplained. Because HDAC inhibitors work by reversing epigenetic silencing, we reasoned that epigenetic heterogeneity among patients may help to explain this inter-individual variability. As a surrogate measure for epigenetic heterogeneity, a highly quantitative measurement of DNA hypermethylation via bisulfite deep sequencing, with single molecule resolution, was used to assess the prevalence of unmethylated, partially methylated, and fully methylated somatic FXN molecules in PBMCs from a prospective cohort of 50 FRDA patients. Treatment of the same PBMCs from this cohort with HDACi-109 significantly increased FXN transcript to levels seen in asymptomatic heterozygous carriers, albeit with the expected inter-individual variability. Response to HDACi-109 correlated significantly with the prevalence of unmethylated and partially methylated FXN molecules, supporting the model that FXN reactivation involves a proportion of genes that are amenable to correction in non-dividing somatic cells, and that heavily methylated FXN molecules are relatively resistant to reactivation. FXN reactivation is a promising therapeutic strategy in FRDA, and inter-individual variability is explained, at least in part, by somatic epigenetic heterogeneity.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi38-vi39
Author(s):  
Satoru Osuka ◽  
Liquan Yang ◽  
Dan Zhu ◽  
Hideharu Hashimoto ◽  
Erwin G Van Meir

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children. MB tends to metastasize to the brain meninges and subarachnoid space and the spinal cord. Leptomeningeal metastasis is frequently found at initial diagnosis and leads to tumor relapse after standard treatment. Leptomeningeal metastasis remains a major challenge and is related with poor outcome. Acquiring a better knowledge of molecular defects underlying metastatic disease is essential for the development of effective therapies. Brain-specific Angiogenesis Inhibitor 1 (BAI1/ADGRB1) is a transmembrane receptor of the adhesion GPCR family widely expressed in normal brain, but its expression is lost in the majority of medulloblastoma through epigenetic silencing. We reported that BAI1 protects p53 from Mdm2-mediated degradation and regulate tumor growth in medulloblastoma (Zhu D. et al, Cancer Cell, 2018). However, it is unclear whether BAI1 loss is important for tumor invasion and the mesenchymal phenotype in MB. Microarray analysis of the published MB dataset revealed that low BAI1 mRNA expression correlates with poor outcome and with expression of many key mesenchymal genes, including Fibronectin1, SLUG, and TWIST1. Restoration of BAI1 expression in human MB cells suppresses mesenchymal gene expression in culture, and dramatically decreases brain tumor invasion. Mechanistically, we found that the N-terminal thrombospondin type 1 repeat (TSR#1) of BAI1 inhibits the maturation process of TGFβ1, a key growth factor involved in EMT. BAI1 is silenced epigenetically in MB cells by methylated CpG-binding protein MBD2, and its expression can be reactivated by KCC-07, a blood-brain barrier permeable MBD2 inhibitor. We found that restoration of BAI1 expression by KCC-07 treatment dramatically reduced tumor cell invasion of MB cells. These experiments demonstrate that epigenetic silencing of BAI1 is important for activation of the MB invasive phenotype through TGFβ1 pathway activation. Epigenetic targeting of this process by KCC-07 can reduce MB invasion.


Author(s):  
Min Zeng ◽  
Xin Wei ◽  
Yang-Li He ◽  
Ji-Xiong Chen ◽  
Wen-Ting Lin ◽  
...  
Keyword(s):  

2021 ◽  
Vol 17 (10) ◽  
pp. e1010014
Author(s):  
Kien Nguyen ◽  
Curtis Dobrowolski ◽  
Meenakshi Shukla ◽  
Won-Kyung Cho ◽  
Benjamin Luttge ◽  
...  

One strategy for a functional cure of HIV-1 is “block and lock”, which seeks to permanently suppress the rebound of quiescent HIV-1 by epigenetic silencing. For the bivalent promoter in the HIV LTR, both histone 3 lysine 27 tri-methylation (H3K27me3) and DNA methylation are associated with viral suppression, while H3K4 tri-methylation (H3K4me3) is correlated with viral expression. However, H3K27me3 is readily reversed upon activation of T-cells through the T-cell receptor. In an attempt to suppress latent HIV-1 in a stable fashion, we knocked down the expression or inhibited the activity of UTX/KDM6A, the major H3K27 demethylase, and investigated its impact on latent HIV-1 reactivation in T cells. Inhibition of UTX dramatically enhanced H3K27me3 levels at the HIV LTR and were associated with increased DNA methylation. In latently infected cells from patients, GSK-J4, which is a potent dual inhibitor of the H3K27me3/me2-demethylases JMJD3/KDM6B and UTX/KDM6A, effectively suppressed the reactivation of latent HIV-1 and also induced DNA methylation at specific sites in the 5’LTR of latent HIV-1 by the enhanced recruitment of DNMT3A to HIV-1. Nonetheless, suppression of HIV-1 through epigenetic silencing required the continued treatment with GSK-J4 and was rapidly reversed after removal of the drug. DNA methylation was also rapidly lost after removal of drug, suggesting active and rapid DNA-demethylation of the HIV LTR. Thus, induction of epigenetic silencing by histone and DNA methylation appears to be insufficient to permanently silence HIV-1 proviral transcription.


Sign in / Sign up

Export Citation Format

Share Document