Preliminary Characterization of Light Harvesting in E. coli DNA Photolyase

ChemBioChem ◽  
2004 ◽  
Vol 5 (8) ◽  
pp. 1088-1094 ◽  
Author(s):  
Allison A. Henry ◽  
Ralph Jimenez ◽  
Denise Hanway ◽  
Floyd E. Romesberg
Biologia ◽  
2009 ◽  
Vol 64 (5) ◽  
Author(s):  
Mushtaq Hussain ◽  
Syeda Qamarunnissa ◽  
Saboohi Raza ◽  
Javed Qureshi ◽  
Abdul Wajid ◽  
...  

AbstractDNA photolyase is perhaps the most ancient and direct arsenal in curing the UV-induced dimers formed in the microbial genome. Out of two cofactors of the enzyme, catalytic and light harvesting, differences in the latter have provided basis for categorizing photolyases of prokaryotes as folate and deazaflavin types. In the present study, the homology modeling of DNA photolyase of Enterococcus faecalis was undertaken. The predicted models were structurally compared with the crystal structure coordinates of photolyases from Escherichia coli (folate type) and Anacystis nidulans (deazaflavin type). Discrepancies present in the multiple sequence alignment and tertiary structures, particularly at the light harvesting cofactor (methenyltetrahydrofolic acid, MTHF; 8-hydroxy-5-deazaflavin, 8-HDF) binding sites indicated the mechanistic nature of enterococcal photolyase. Concisely, despite the greater holistic homology with folate-type photolyase, enterococcal photolyase was characterized as deazaflavin-type. The presence of 8-HDF binding sites and groove architecture of substrate binding sites were also found supportive in this regard. The inter cofactor distance and/or orientation also implied to the efficient energy transfer in photolyase of Enterococcus in comparison with E. coli. In addition, we observed relatively high protein deformability in the enterococcal genome, which may favors the repair action of photolyase. The findings are expected to provide molecular insights into the difference in sunlight inactivation rate of two important fecal contamination indicators, namely Enterococcus and E. coli.


1982 ◽  
Vol 47 (02) ◽  
pp. 128-131 ◽  
Author(s):  
F Esnard ◽  
E Dupuy ◽  
A M Dosne ◽  
E Bodevin

SummaryA preliminary characterization of a fibrinolytic inhibitor released by human umbilical vein endothelial cells in primary culture is reported. This molecule of Mr comprised between 2 × 105 and 106 and of μ2 mobility precipitates at 43% ammonium sulphate saturation and is totally adsorbed on Concanavalin A Sepharose 4 B. A possible relationship with a macroglobulins is discussed.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


2018 ◽  
Vol 34 (3) ◽  
pp. 267-278
Author(s):  
Ashraf A. Abd El-Tawab ◽  
Mohamed G. Aggour ◽  
Fatma I. El- Hofy ◽  
Marwa M. Y. El- Mesalami

Sign in / Sign up

Export Citation Format

Share Document