Highly Sensitive Measurement of Inositol 1,4,5-Trisphosphate by Using a New Fluorescent Ligand and Ligand Binding Domain Combination

ChemBioChem ◽  
2016 ◽  
Vol 17 (16) ◽  
pp. 1509-1512 ◽  
Author(s):  
Tai Oura ◽  
Kaori Murata ◽  
Takao Morita ◽  
Akihiro Nezu ◽  
Mitsuhiro Arisawa ◽  
...  
2004 ◽  
Vol 377 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Tomohiro NAKAYAMA ◽  
Mitsuharu HATTORI ◽  
Keiko UCHIDA ◽  
Takeshi NAKAMURA ◽  
Yoko TATEISHI ◽  
...  

The type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is an intracellular Ca2+ channel protein that plays crucial roles in generating complex Ca2+ signalling patterns. IP3R1 consists of three domains: a ligand-binding domain, a regulatory domain and a channel domain. In order to investigate the function of these domains in its gating machinery and the physiological significance of specific cleavage by caspase 3 that is observed in cells undergoing apoptosis, we utilized various IP3R1 constructs tagged with green fluorescent protein (GFP). Expression of GFP-tagged full-length IP3R1 or IP3R1 lacking the ligand-binding domain in HeLa and COS-7 cells had little effect on cells’ responsiveness to an IP3-generating agonist ATP and Ca2+ leak induced by thapsigargin. On the other hand, in cells expressing the caspase-3-cleaved form (GFP–IP3R1-casp) or the channel domain alone (GFP–IP3R1-ES), both ATP and thapsigargin failed to induce increase of cytosolic Ca2+ concentration. Interestingly, store-operated (−like) Ca2+ entry was normally observed in these cells, irrespective of thapsigargin pre-treatment. These findings indicate that the Ca2+ stores of cells expressing GFP–IP3R1-casp or GFP–IP3R1-ES are nearly empty in the resting state and that these proteins continuously leak Ca2+. We therefore propose that the channel domain of IP3R1 tends to remain open and that the large regulatory domain of IP3R1 is necessary to keep the channel domain closed. Thus cleavage of IP3R1 by caspase 3 may contribute to the increased cytosolic Ca2+ concentration often observed in cells undergoing apoptosis. Finally, GFP–IP3R1-casp or GFP–IP3R1-ES can be used as a novel tool to deplete intracellular Ca2+ stores.


Cell Calcium ◽  
2008 ◽  
Vol 43 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Benoit Devogelaere ◽  
Leen Verbert ◽  
Jan B. Parys ◽  
Ludwig Missiaen ◽  
Humbert De Smedt

Author(s):  
Hari Balaji ◽  
Selvaraj Ayyamperuma ◽  
Niladri Saha ◽  
Shyam Sundar Pottabathula ◽  
Jubie Selvaraj ◽  
...  

: Vitamin-D deficiency is a global concern. Gene mutations in the vitamin D receptor’s (VDR) ligand binding domain (LBD) variously alter the ligand binding affinity, heterodimerization with retinoid X receptor (RXR) and inhibit coactivator interactions. These LBD mutations may result in partial or total hormone unresponsiveness. A plethora of evidence report that selective long chain polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) bind to the ligand-binding domain of VDR and lead to transcriptional activation. We therefore hypothesize that selective PUFAs would modulate the dynamics and kinetics of VDRs, irrespective bioactive of vitamin-D binding. The spatial arrangements of the selected PUFAs in VDR active site were examined by in-silico docking studies. The docking results revealed that PUFAs have fatty acid structure-specific binding affinity towards VDR. The calculated EPA, DHA & AA binding energies (Cdocker energy) were lesser compared to vitamin-D in wild type of VDR (PDB id: 2ZLC). Of note, the DHA has higher binding interactions to the mutated VDR (PDB id: 3VT7) when compared to the standard Vitamin-D. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding of DHA with mutated VDR complex. These findings suggest the unique roles of PUFAs in VDR activation and may offer alternate strategy to circumvent vitamin-D deficiency.


Sign in / Sign up

Export Citation Format

Share Document