Hypoxia induces adipocyte differentiation of adipose-derived stem cells by triggering reactive oxygen species generation

2013 ◽  
Vol 38 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Ji Hye Kim ◽  
Seok-Ho Kim ◽  
Seung Yong Song ◽  
Won-Serk Kim ◽  
Sun U. Song ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Arif Malik ◽  
Misbah Sultana ◽  
Aamer Qazi ◽  
Mahmood Husain Qazi ◽  
Gulshan Parveen ◽  
...  

Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds.


Author(s):  
P. Engel ◽  
M. Ranieri ◽  
O. Felthaus ◽  
S. Geis ◽  
F. Haubner ◽  
...  

BACKGROUND: A key moderator of wound healing is oxygen. Wound healing is a dynamic and carefully orchestrated process involving blood cells, cytokines, parenchymal cells (i.e. fibroblasts and mesenchymal stem cells) and extracellular matrix reorganization. Human adipose derived stem cells as well as human fibroblasts produce soluble factors, exhibit diverse effects on inflammation and anti inflammation response and are involved in wound healing processes. Hyperbaric oxygen therapy is an effective adjunct treatment for ischemic disorders such as chronic infection or chronic wounds. In vitro effects of hyperbaric oxygen therapy on human cells were presented in many studies except for those on mono- and co-cultures of human adipose derived stem cells and fibroblasts. OBJECTIVE: The aim of this study was to investigate the effects of hyperbaric oxygen therapy on mono- and co-cultures of human adipose derived stem cells and fibroblasts. METHODS: Mono- and co-cultures from human adipose derived stem cells and fibroblasts were established. These cultures were exposed to hyperbaric oxygen therapy every 24 h for five consecutive days. Measuring experiments were performed on the first, third and fifth day. Therapy effects on the expression of VEGF, IL 6 and reactive oxygen species were investigated. RESULTS: After exposure to hyperbaric oxygen, cell culturess showed a significant increase in the expression of VEGF after 3 and 5 days. All cultures showed significantly reduced formation of reactive oxygen species throughout the experiments. The expression of IL-6 decreased during the experiment in mono-cultures of human adipose derived stem cells and co-cultures. In contrast, mono-cultures of human skin fibroblasts showed an overall significantly increased expression of IL-6. CONCLUSIONS: Hyperbaric oxygen therapy leads to immunmodulatory and proangiogenetic effects in a wound-like enviroment of adipose derived stem cells and fibroblasts.


2019 ◽  
Vol 20 (9) ◽  
pp. 2314 ◽  
Author(s):  
Yeo Min Yoon ◽  
Jun Hee Lee ◽  
Chul Won Yun ◽  
Sang Hun Lee

Mesenchymal stem cells (MSCs) are optimal sources of autologous stem cells for cell-based therapy in chronic kidney disease (CKD). However, CKD-associated pathophysiological conditions, such as endoplasmic reticulum (ER) stress and oxidative stress, decrease MSC function. In this work, we study the protective effect of pioglitazone on MSCs isolated from CKD patients (CKD-MSCs) against CKD-induced ER stress. In CKD-MSCs, ER stress is found to induce mitochondrial reactive oxygen species generation and mitochondrial dysfunction. Treatment with pioglitazone reduces the expression of ER stress markers and mitochondrial fusion proteins. Pioglitazone increases the expression of cellular prion protein (PrPC) in CKD-MSCs, which is dependent on the expression levels of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Treatment with pioglitazone is found to protect CKD-MSCs against reactive oxygen species generation, aberrant mitochondrial oxidative phosphorylation of complexes I and IV, and aberrant proliferation capacity through the PGC-1α-PrPC axis. These results indicate that pioglitazone protects the mitochondria of MSCs from CKD-induced ER stress. Pioglitazone treatment of CKD-MSCs may be a potential therapeutic strategy for CKD patients.


Sign in / Sign up

Export Citation Format

Share Document