Research Progress of Silicon/Carbon Anode Materials for Lithium‐Ion Batteries: Structure Design and Synthesis Method

2020 ◽  
Vol 7 (21) ◽  
pp. 4289-4302
Author(s):  
Xinzhi Li ◽  
Meng Zhang ◽  
Shuxia Yuan ◽  
Chunxiang Lu
2018 ◽  
Vol 5 (6) ◽  
pp. 172370 ◽  
Author(s):  
Xuyan Liu ◽  
Xinjie Zhu ◽  
Deng Pan

Lithium-ion batteries are widely used in various industries, such as portable electronic devices, mobile phones, new energy car batteries, etc., and show great potential for more demanding applications like electric vehicles. Among advanced anode materials applied to lithium-ion batteries, silicon–carbon anodes have been explored extensively due to their high capacity, good operation potential, environmental friendliness and high abundance. Silicon–carbon anodes have demonstrated great potential as an anode material for lithium-ion batteries because they have perfectly improved the problems that existed in silicon anodes, such as the particle pulverization, shedding and failures of electrochemical performance during lithiation and delithiation. However, there are still some problems, such as low first discharge efficiency, poor conductivity and poor cycling performance, which need to be improved. This paper mainly presents some methods for solving the existing problems of silicon–carbon anode materials through different perspectives.


2009 ◽  
Vol 189 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Zhaojun Luo ◽  
Dongdong Fan ◽  
Xianlong Liu ◽  
Huanyu Mao ◽  
Caifang Yao ◽  
...  

2021 ◽  
Vol 1036 ◽  
pp. 35-44
Author(s):  
Ling Fang Ruan ◽  
Jia Wei Wang ◽  
Shao Ming Ying

Silicon-based anode materials have been widely discussed by researchers because of its high theoretical capacity, abundant resources and low working voltage platform,which has been considered to be the most promising anode materials for lithium-ion batteries. However,there are some problems existing in the silicon-based anode materials greatly limit its wide application: during the process of charge/discharge, the materials are prone to about 300% volume expansion, which will resultin huge stress-strain and crushing or collapse on the anods; in the process of lithium removal, there is some reaction between active material and current collector, which creat an increase in the thickness of the solid phase electrolytic layer(SEI film); during charging and discharging, with the increase of cycle times, cracks will appear on the surface of silicon-based anode materials, which will cause the batteries life to decline. In order to solve these problems, firstly, we summarize the design of porous structure of nanometer sized silicon-based materials and focus on the construction of three-dimensional structural silicon-based materials, which using natural biomass, nanoporous carbon and metal organic framework as structural template. The three-dimensional structure not only increases the channel of lithium-ion intercalation and the rate of ion intercalation, but also makes the structure more stable than one-dimensional or two-dimensional. Secondly, the Si/C composite, SiOx composite and alloying treatment can improve the volume expansion effection, increase the rate of lithium-ion deblocking and optimize the electrochemical performance of the material. The composite materials are usually coated with elastic conductive materials on the surface to reduce the stress, increase the conductivity and improve the electrochemical performance. Finally, the future research direction of silicon-based anode materials is prospected.


CrystEngComm ◽  
2015 ◽  
Vol 17 (48) ◽  
pp. 9336-9347 ◽  
Author(s):  
Jingyun Ma ◽  
Longwei Yin ◽  
Tairu Ge

We report on the rational design and synthesis of three dimensional (3D) Cu-doped NiO architectures with an adjustable chemical component, surface area, and hierarchically porous structure as anodes for lithium ion battery.


2016 ◽  
Vol 168 ◽  
pp. 138-142 ◽  
Author(s):  
Yu Zhou ◽  
Huajun Guo ◽  
Yong Yang ◽  
Zhixing Wang ◽  
Xinhai Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document