hierarchically porous structure
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 7)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jihun Choi ◽  
Hansol Lee ◽  
Bokyeong Sohn ◽  
Minjae Song ◽  
Sangmin Jeon

AbstractWe developed a 3D solar steam generator with the highest evaporation rate reported so far using a carbonized luffa sponge (CLS). The luffa sponge consisted of entangled fibers with a hierarchically porous structure; macropores between fibers, micro-sized pores in the fiber-thickness direction, and microchannels in the fiber-length direction. This structure remained after carbonization and played an important role in water transport. When the CLS was placed in the water, the microchannels in the fiber-length direction transported water to the top surface of the CLS by capillary action, and the micro-sized pores in the fiber-thickness direction delivered water to the entire fiber surface. The water evaporation rate under 1-sun illumination was 3.7 kg/m2/h, which increased to 14.5 kg/m2/h under 2 m/s wind that corresponded to the highest evaporation rate ever reported under the same condition. The high evaporation performance of the CLS was attributed to its hierarchically porous structure. In addition, it was found that the air temperature dropped by 3.6 °C when the wind passed through the CLS because of the absorption of the latent heat of vaporization. The heat absorbed by the CLS during water evaporation was calculated to be 9.7 kW/m2 under 1-sun illumination and 2 m/s wind, which was 10 times higher than the solar energy irradiated on the same area (1 kW/m2).


2021 ◽  
pp. 2151021
Author(s):  
Yuxuan Liu ◽  
Xinhua Cheng ◽  
Shenghui Zhang

High-performance capacitive carbon materials, derived from tobacco stalk, were prepared by a one-step carbonization process in molten carbonate. Owing to the high specific surface area (SSA) (1165.9 m2 g[Formula: see text] and heteroatom doping by the activation effect of molten salt medium for 3 h, the as-obtained carbon material with hierarchically porous structure exhibits an ideal capacitive property with delivering specific capacitances of 219.8, 188.0, 176.4, and 168.4 F g[Formula: see text] at 0.2, 0.5, 1, and 2 A g[Formula: see text], respectively, acceptable rate performance with 76.6% capacitance retention in range of 0.2–2 A g[Formula: see text], and good cyclic stability with 93% capacitance retention after 3000 charge–discharge cycles at 1 A g[Formula: see text], as well as energy density of 30.5 Wh kg[Formula: see text] at 0.2 A g[Formula: see text] and power density of 989.6 W kg[Formula: see text] at 2 A g[Formula: see text] in 1 mol L[Formula: see text] H2SO4 aqueous solution using a three-electrode system. Moreover, it delivers specific capacitances of 143.3, 140.2, 137.4, and 134.3 F g[Formula: see text] at 0.2, 0.5, 1, and 2 A g[Formula: see text], respectively, and excellent rate performance with 93.7% capacitance retention in range of 0.2–2 A g[Formula: see text], as well as energy density of 4.9 Wh kg[Formula: see text] at 0.2 A g[Formula: see text] and power density of 488.6 W kg[Formula: see text] at 2 A g[Formula: see text] in 6 mol L[Formula: see text] KOH aqueous solution using a symmetrical two-electrode system. The correlation between hierarchically porous structure with heteroatom doping and capacitive performance is also discussed.


Author(s):  
Jianguo Li ◽  
Chaoji Chen ◽  
Wentao Gan ◽  
Zhihan Li ◽  
Hua Xie ◽  
...  

High-rate evaporation is achieved by a delignified reed, featuring hierarchically, 3D porous structure with microchannels surrounding macrochannels, which decouples the transport and evaporation of fluids, contributing to a high evaporation rate.


Author(s):  
Bo Wen ◽  
Haibo Yang ◽  
Ying Lin ◽  
Liang Ma ◽  
Yun Qiu ◽  
...  

Electromagnetic wave absorbents with hierarchically porous and core-shell structures have significantly positive influence on electromagnetic wave absorption because of the enhanced interfacial polarization. Furthermore, the core-shell structure also introduces components...


Sign in / Sign up

Export Citation Format

Share Document