Vulnerability of bridge piers to general and local erosion of river bed

ce/papers ◽  
2018 ◽  
Vol 2 (2-3) ◽  
pp. 499-504
Author(s):  
Verka PROLOVIĆ ◽  
Zoran BONIĆ ◽  
Nebojša DAVIDOVIĆ ◽  
Elefterija ZLATANOVIĆ ◽  
Nikola ROMIĆ
Keyword(s):  
2020 ◽  
Author(s):  
Okan Özcan ◽  
Orkan Özcan

<p>Evaluating the multi-hazard performance of river crossing bridges under probable earthquake, flood, and scouring scenarios is a cumbersome task in performance-based engineering. The loss of lateral load capacity at bridge foundations may induce bridges to become highly vulnerable to failure when the effects of scour and floods are combined. Besides, the assessment of local scouring mechanism around bridge piers provides information for decision‐making regarding the pile footing design and for predicting the safety of bridges under critical scoured conditions. Thereby, accurate high-resolution Digital Elevation Models (DEMs) are critical for many hydraulic applications such as erosion, hydraulic modelling, sediment transport, and morphodynamics. In the present study, an automated unmanned aerial vehicle (UAV) based multi-hazard performance assessment system was developed to respond to rapid performance evaluation and performance prediction needs for river crossing reinforced concrete (RC) bridges. The Bogacay Bridge constructed over Bogacay in Antalya, Turkey was selected as the case study. In the developed system, firstly the seasonally acquired UAV measurements were used to obtain the DEMs of the river bed from 2016 to 2019. The transverse cross sections of the river bed that were taken close to the inspected bridge were used to measure the depth of the scoured regions along the bridge piles under the present conditions. Separately, in conjunction with the flood simulation and validation with 2003 flood event (corresponds to Q<sub>50</sub>=1940 m<sup>3</sup>/s), the scour depth after maximum probable flood load according to the return period of 500 years (Q<sub>500</sub>=2560 m<sup>3</sup>/s) were predicted by HEC-RAS software. Afterwards, the 3D finite element model (FEM) of the bridge was constituted automatically with the developed code considering the scoured piles. The flood loads were exerted on the modeled bridge with regard to the HEC-RAS flood inundation map and relevant water depth estimations around the bridge piers. For the seismic evaluation, nonlinear time history analyses (THA) were conducted by using scaled eleven scaled earthquake acceleration records that were acting in both principal axes of the bridge simultaneously by considering maximum direction spectra (SaRotD100) as compatible with the region seismicity. In the analyses; as the scour depth increased, the fundamental periods, shear forces and the bending moments were observed to increase while the pile lateral load capacities diminished. Therefore, the applicability of the proposed system was verified using the case study bridge.</p>


1974 ◽  
Vol 11 (3) ◽  
pp. 409-419
Author(s):  
Robert B. Dodds ◽  
G. V. Ganapathy

Seismographic equipment was used to study the response of a railway bridge under dynamic train loading and thereby to determine the performance of the foundations of the bridge. The same methods were used to determine the effectiveness of remedial work done on the bridge piers and on the subsoil beneath the piers.The bridge was constructed in 1898 and is a three-span, masonry and stone arch bridge, 273 ft (83.2 m) in length. The east abutment is founded on bedrock, however, the west abutment and two piers in the river bed are founded on deep alluvial deposits.Seismographic studies indicated relatively large movements of one pier which were attributed to foundation scouring. A program of grouting the pier subgrade confirmed this assessment. Subsequent seismographic studies confirmed the effectiveness of the remedial works undertaken. The studies of the bridge responses under dynamic train loading provided sufficient data that scour areas beneath a pier could be pinpointed.The technique applied on this project determined bridge pier foundation conditions much more quickly and economically than a normal program of exploratory drill holes. The same technique could be used to assess the behavior of individual components of a bridge structure.


2020 ◽  
Vol 144 ◽  
pp. 01008
Author(s):  
Shaolin Yue ◽  
Huan Zhou ◽  
Wenlong Zhu ◽  
Minxi Zhang

The riverbeds or sea beds are usually composed of multi-layers of sediments. The scour around bridge piers sited on such beds is vital to the bridge safety, but is still very difficult to be predicated as its complicated interaction between the flow and bed layers. A simple model is proposed in this study for calculating the local scour maximum depth around bridge piers sited on multi-layer of sedimentary bed, which is based on HEC-18 formula revised by Richardson and Davis (2001) and the formula of the repose angle of sediment particles proposed by Cheng (1993). This model considers the particle sorting when the scour proceeds. An application of the model into the local scour depth of Guopan bridge pier sited on the Weihe River bed in Baoji city of China preliminarily demonstrates its reliability to calculate the local scour maximum depth around bridge piers sited on multi-layer of sedimentary bed.


2018 ◽  
Vol 40 ◽  
pp. 03007
Author(s):  
Fong-Zuo Lee ◽  
Jihn-Sung Lai ◽  
Yuan-Bin Lin ◽  
Kuo-Chun Chang ◽  
Xiaoqin Liu ◽  
...  

In practice, it is a major challenge in real-time simulation and prediction of bridge pier scour depth, especially using 3-D numerical model. The simulation time spend too much to use 3-D numerical model simulation and inefficiently to predict bridge pier scour depth in real-time. With heavy rainfall during flood season in Taiwan, abundant sediment with flash flood from upstream watershed is transported to downstream river reaches and transportation time is limited within one day. The flood flow tends to damage bridge structures and affect channel stabilization in fluvial rivers. In addition, the main factors affecting the erosional depth around bridge piers and river bed stabilization are hydrological and hydrographic characteristics in river basin, the scouring and silting of river bed section near the bridge piers, the bridge geometry and protection works of bridge piers. Therefore, based on the observed rainfall data provided by the Central Weather Bureau and the hydrological conditions provided by the Water Resources Agency during flood event as the boundary condition, we develop an effective simulation system for scour depth of bridge piers. The scour depth at the bridge pier is observed by the National Center for Research on Earthquake Engineering for model calibration. In this study, an innovative scour monitoring system using vibration-based Micro-Electro Mechanical Systems (MEMS) sensors was applied. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. It has demonstrated that the measurement system for monitoring bridge scour depth evolution is quite successful in the field.


2017 ◽  
Author(s):  
Adnan Ismael ◽  
Hamid Hussein ◽  
Mohammed Tareq ◽  
Mustafa Gunal

2016 ◽  
Vol 106 (6) ◽  
pp. 683-690 ◽  
Author(s):  
Hai FANG ◽  
Lu ZHU ◽  
Francis T.K AU

Author(s):  
Marina Krylenko ◽  
Marina Krylenko ◽  
Alexandr Aleynikov ◽  
Alexandr Aleynikov ◽  
Viacheslav Krylenko ◽  
...  

The Anapa bay-bar is located in the northwestern part of the Black Sea. With the goal in mind to determine the short-term dynamics of the Anapa bay-bar we analyzed satellite images from 2003 to the present. Depending on the hydro-lithodynamical situation the shoreline configuration during storm can vary from a rectilinear to sinusoidal forms. There are regions of local erosion or accumulation whose formation is related to the alongshore motion of sediments and dynamics of underwater bars. Comparison of the data on 1965 and 1966 showed that in this period the amplitude of the shoreline position was more than 20 m but average displacement of the shoreline for 13 months was only 0.8 m. This study showed that for the analysis of changes in the shoreline position is necessary to consider the configuration of the coastline at the time of each observation and the local dynamics.


Sign in / Sign up

Export Citation Format

Share Document