Chain-Growth Versus Step-Growth Mechanisms for the Suzuki-Heck Polymerisation of Fluorenyldibromides with Potassium Vinyl Trifluoroborate

2010 ◽  
Vol 16 (27) ◽  
pp. 8054-8061 ◽  
Author(s):  
Roberto Grisorio ◽  
Gian Paolo Suranna ◽  
Piero Mastrorilli
RSC Advances ◽  
2015 ◽  
Vol 5 (84) ◽  
pp. 68361-68368 ◽  
Author(s):  
R. Ghoreishi ◽  
G. J. Suppes

A new approach simulates alcohol–isocyanate reactions in polyurethane systems: catalytic mechanisms dominate the kinetics and chain growth mechanisms overwhelm step growth.


Polymer Chemistry: A Practical Approach in Chemistry has been designed for both chemists working in and new to the area of polymer synthesis. It contains detailed instructions for preparation of a wide-range of polymers by a wide variety of different techniques, and describes how this synthetic methodology can be applied to the development of new materials. It includes details of well-established techniques, e.g. chain-growth or step-growth processes together with more up-to-date examples using methods such as atom-transfer radical polymerization. Less well-known procedures are also included, e.g. electrochemical synthesis of conducting polymers and the preparation of liquid crystalline elastomers with highly ordered structures. Other topics covered include general polymerization methodology, controlled/"living" polymerization methods, the formation of cyclic oligomers during step-growth polymerization, the synthesis of conducting polymers based on heterocyclic compounds, dendrimers, the preparation of imprinted polymers and liquid crystalline polymers. The main bulk of the text is preceded by an introductory chapter detailing some of the techniques available to the scientist for the characterization of polymers, both in terms of their chemical composition and in terms of their properties as materials. The book is intended not only for the specialist in polymer chemistry, but also for the organic chemist with little experience who requires a practical introduction to the field.


Author(s):  
Najib Aragrag ◽  
Dario C. Castiglione

This chapter is intended to provide a general introduction to the laboratory techniques used in polymer synthesis, by focusing on some relatively well-known polymerizations that occur by chain-growth processes. In this way some of the more commonly used procedures in polymer chemistry are described. Due to the nature of the intermediates produced, such as free radicals, carbanions, carbocations, together with a range of organometallic species, the techniques often involve handling compounds in the complete absence of oxygen and moisture. Because of this the best results may require quite sophisticated equipment and glassware; however, it is our intention to show that the general procedures are accessible to any reasonably equipped laboratory, and indeed some of the techniques are suitable for use in an undergraduate teaching laboratory. Chain-growth polymerization involves the sequential step-wise addition of monomer to a growing chain. Usually, the monomer is unsaturated, almost always a derivative of ethene, and most commonly vinylic, that is, a monosubstituted ethane, 1 particularly where the growing chain is a free radical. For such monomers, the polymerization process is classified by the way in which polymerization is initiated and thus the nature of the propagating chain, namely anionic, cationic, or free radical; polymerization by coordination catalyst is generally considered separately as the nature of the growing chain-end may be less clear and coordination may bring about a substantial level of control not possible with other methods. Ring-opening polymerizations exhibit many of the features of chain-growth polymerization, but may also show some of the features expected from stepgrowth polymerizations. However, it is probably fair to say that from a practical point of view the techniques involved are rather similar or the same as those used in chain-growth processes and consequently some examples of ring-opening processes are provided here. It is particularly instructive to consider the requirements of chain-growth compared to step-growth processes in terms of the demands for reagent purity and reaction conditions.


2015 ◽  
Vol 6 (36) ◽  
pp. 6465-6474 ◽  
Author(s):  
Dipankar Basak ◽  
Raju Bej ◽  
Suhrit Ghosh

Redox-responsive amphiphilic triblock copolymers based on poly(triethylene glycol monomethyl ether)methacrylate-b-poly(disulfide)-b-poly(triethylene glycol monomethyl ether)methacrylate (PTEGMA-b-PDS-b-PTEGMA) with different hydrophobicities of the PDS block were synthesized by step-growth followed by chain-growth polymerization.


Polymer ◽  
2017 ◽  
Vol 129 ◽  
pp. 83-91 ◽  
Author(s):  
Irina V. Vasilenko ◽  
Aliaksei A. Vaitusionak ◽  
Jurgita Sutaite ◽  
Ausra Tomkeviciene ◽  
Jolita Ostrauskaite ◽  
...  

Author(s):  
Zhiqun He ◽  
Eric A . Whale

Step-growth polymerization is often referred to as condensation polymerization, since often—but by no means always—small molecules such as water are released during the formation of the polymer chains. There are a number of differences in the way polymerization occurs in step-growth polymerization compared to chain-growth processes, and these have marked practical implications. The most obvious difference is that, as the name implies, the polymer chain grows in a step-wise fashion; the initial stage of the reaction involves the conversion of monomers to dimers and from these other lower molecular weight oligomers. It is only as the reaction nears completion that significant quantities of higher molecular weight material can be formed. Thus, in order to obtain effective molecular weights, the reaction must proceed almost to completion, indeed the molecular weight (in terms of the number average degree of polymerization xn) of the polymer can be linked to the extent of reaction (p) using eqn (1). Thus, in the simplest case of a difunctional (AB) monomer, when 50% of the available groups have reacted, the number average degree of polymerization is only 2. The consequence of eqn (1) is that high molecular weights in step-growth polymerizations are associated with highly efficient reactions that do not have side-reactions. Notwithstanding this, the types of molecular weights associated with chain-growth processes are not encountered in these processes (except in the case of monomers with more than two reactive groups where hyper-branched or even cross-linked polymers are possible). There is an additional complication, namely the role of cyclization. Kricheldorf has recently shown that under perfect conditions cyclization is the ultimate fate of any polymerization reaction. Thus, under extremely high conversions the prediction given by eqn (1) would overestimate the actual molecular weights produced. Molecules that undergo step-growth polymerization must have at least two reactive functional groups. If the functionality is greater than this, for example, trifunctional, then hyperbranched polymers or even cross-linked systems can be formed. Commonly, this involves the reaction of two different reactive difunctional monomers.


Sign in / Sign up

Export Citation Format

Share Document