Triindolo-Truxene Derivatives: Design, Synthesis, and Fine-Tuning of Electronic Properties and Molecular Assembly through Molecular Engineering

2018 ◽  
Vol 25 (5) ◽  
pp. 1293-1299
Author(s):  
Jun-Bo Chen ◽  
Cen Zhou ◽  
Ru-Qiang Lu ◽  
Xin-Chang Wang ◽  
Hang Qu ◽  
...  
2018 ◽  
Author(s):  
Kent O. Kirlikovali ◽  
Jonathan C. Axtell ◽  
Kierstyn Anderson ◽  
Peter I. Djurovich ◽  
Arnold L. Rheingold ◽  
...  

We report the synthesis of two isomeric Pt(II) complexes ligated by doubly deprotonated 1,1′-bis(<i>o</i>-carborane) (<b>bc</b>). This work provides a potential route to fine-tune the electronic properties of luminescent metal complexes by virtue of vertex-differentiated coordination chemistry of carborane-based ligands.


2018 ◽  
Vol 37 (18) ◽  
pp. 3122-3131 ◽  
Author(s):  
Kent O. Kirlikovali ◽  
Jonathan C. Axtell ◽  
Kierstyn Anderson ◽  
Peter I. Djurovich ◽  
Arnold L. Rheingold ◽  
...  

2017 ◽  
Vol 35 (4) ◽  
pp. 503-514 ◽  
Author(s):  
Fu-ai Teng ◽  
Feng-li Liu ◽  
Lu Han ◽  
Zheng-ju Zhu ◽  
Yi-fang Zhang ◽  
...  

2020 ◽  
Author(s):  
Craig Yu ◽  
Naoya Kojima ◽  
Shohei Kumagai ◽  
Tadanori Kurosawa ◽  
Hiroyuki Ishii ◽  
...  

Abstract Benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) n-type organic semiconductors demonstrate unique multi-fold intermolecular hydrogen-bonding interactions that lead to excellent aggregated structures, charge transports, and electron mobility. However, the robust intermolecular anchoring of BQQDI presents challenges for further fine-tuning molecular assemblies and organic semiconductor properties. Herein, we report the design and synthesis of two BQQDI derivatives with sterically demanding phenyl- and cyclohexyl-substituted BQQDI (Ph–BQQDI and Cy6–BQQDI), where the two organic semiconductors show distinct molecular assemblies and degrees of intermolecular orbital overlaps. In addition, the difference in their packing motifs led to strikingly different band structures that give rise to contrasting charge-transport capabilities. As a result, Cy6–BQQDI shows excellent transistor performances in both single-crystalline and polycrystalline thin-film organic field-effect transistors.


2019 ◽  
Vol 85 (17) ◽  
Author(s):  
Zhu Jiang ◽  
Tengfei Niu ◽  
Xueqin Lv ◽  
Yanfeng Liu ◽  
Jianghua Li ◽  
...  

ABSTRACT Diacetylchitobiose deacetylase has great application potential in the production of chitosan oligosaccharides and monosaccharides. This work aimed to achieve high-level secretory production of diacetylchitobiose deacetylase by Bacillus subtilis and perform molecular engineering to improve catalytic performance. First, we screened 12 signal peptides for diacetylchitobiose deacetylase secretion in B. subtilis, and the signal peptide YncM achieved the highest extracellular diacetylchitobiose deacetylase activity of 13.5 U/ml. Second, by replacing the HpaII promoter with a strong promoter, the P43 promoter, the activity was increased to 18.9 U/ml. An unexpected mutation occurred at the 5′ untranslated region of plasmid, and the extracellular activity reached 1,548.1 U/ml, which is 82 times higher than that of the original strain. Finally, site-directed saturation mutagenesis was performed for the molecular engineering of diacetylchitobiose deacetylase to further improve the catalytic efficiency. The extracellular activity of mutant diacetylchitobiose deacetylase R157T reached 2,042.8 U/ml in shake flasks. Mutant R157T exhibited much higher specific activity (3,112.2 U/mg) than the wild type (2,047.3 U/mg). The Km decreased from 7.04 mM in the wild type to 5.19 mM in the mutant R157T, and the Vmax increased from 5.11 μM s−1 in the wild type to 7.56 μM s−1 in the mutant R157T. IMPORTANCE We successfully achieved efficient secretory production and improved the catalytic efficiency of diacetylchitobiose deacetylase in Bacillus subtilis, and this provides a good foundation for the application of diacetylchitobiose deacetylase in the production of chitosan oligosaccharides and monosaccharides.


ACS Nano ◽  
2019 ◽  
Vol 13 (7) ◽  
pp. 7780-7790 ◽  
Author(s):  
Rami W. Chakroun ◽  
Feihu Wang ◽  
Ran Lin ◽  
Yin Wang ◽  
Hao Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document