Fine-tuning of electronic properties in donor–acceptor conjugated polymers based on oligothiophenes

2017 ◽  
Vol 57 (3S2) ◽  
pp. 03EJ01 ◽  
Author(s):  
Ichiro Imae ◽  
Hitoshi Sagawa ◽  
Yutaka Harima
2018 ◽  
Author(s):  
Kent O. Kirlikovali ◽  
Jonathan C. Axtell ◽  
Kierstyn Anderson ◽  
Peter I. Djurovich ◽  
Arnold L. Rheingold ◽  
...  

We report the synthesis of two isomeric Pt(II) complexes ligated by doubly deprotonated 1,1′-bis(<i>o</i>-carborane) (<b>bc</b>). This work provides a potential route to fine-tune the electronic properties of luminescent metal complexes by virtue of vertex-differentiated coordination chemistry of carborane-based ligands.


2019 ◽  
Author(s):  
Qi Yuan ◽  
Alejandro Santana-Bonilla ◽  
Martijn Zwijnenburg ◽  
Kim Jelfs

<p>The chemical space for novel electronic donor-acceptor oligomers with targeted properties was explored using deep generative models and transfer learning. A General Recurrent Neural Network model was trained from the ChEMBL database to generate chemically valid SMILES strings. The parameters of the General Recurrent Neural Network were fine-tuned via transfer learning using the electronic donor-acceptor database from the Computational Material Repository to generate novel donor-acceptor oligomers. Six different transfer learning models were developed with different subsets of the donor-acceptor database as training sets. We concluded that electronic properties such as HOMO-LUMO gaps and dipole moments of the training sets can be learned using the SMILES representation with deep generative models, and that the chemical space of the training sets can be efficiently explored. This approach identified approximately 1700 new molecules that have promising electronic properties (HOMO-LUMO gap <2 eV and dipole moment <2 Debye), 6-times more than in the original database. Amongst the molecular transformations, the deep generative model has learned how to produce novel molecules by trading off between selected atomic substitutions (such as halogenation or methylation) and molecular features such as the spatial extension of the oligomer. The method can be extended as a plausible source of new chemical combinations to effectively explore the chemical space for targeted properties.</p>


2021 ◽  
Author(s):  
Bowen Ding ◽  
Gunwoo Kim ◽  
Youngseok Kim ◽  
Flurin D. Eisner ◽  
Edgar Gutiérrez-Fernández ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2486
Author(s):  
Dexun Xie ◽  
Jing Xiao ◽  
Quanwei Li ◽  
Tongchao Liu ◽  
Jinjia Xu ◽  
...  

Conjugated polymers with narrower bandgaps usually induce higher carrier mobility, which is vital for the improved thermoelectric performance of polymeric materials. Herein, two indacenodithiophene (IDT) based donor–acceptor (D-A) conjugated polymers (PIDT-BBT and PIDTT-BBT) were designed and synthesized, both of which exhibited low-bandgaps. PIDTT-BBT showed a more planar backbone and carrier mobility that was two orders of magnitude higher (2.74 × 10−2 cm2V−1s−1) than that of PIDT-BBT (4.52 × 10−4 cm2V−1s−1). Both exhibited excellent thermoelectric performance after doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, where PIDTT-BBT exhibited a larger conductivity (0.181 S cm−1) and a higher power factor (1.861 μW m−1 K−2) due to its higher carrier mobility. The maximum power factor of PIDTT-BBT reached 4.04 μW m−1 K−2 at 382 K. It is believed that conjugated polymers with a low bandgap are promising in the field of organic thermoelectric materials.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 393
Author(s):  
Ja Eun Lee ◽  
Yoon Kim ◽  
Yang Ho Na ◽  
Nam Seob Baek ◽  
Jae Woong Jung ◽  
...  

We synthesized medium-band-gap donor-acceptor (D-A) -type conjugated polymers (PBTZCZ-L and PBTZCZ-H) consisting of a benzotriazole building block as an acceptor and a carbazole unit as a donor. In comparison with the polymers, a small conjugated molecule (BTZCZ-2) was developed, and its structural, thermal, optical, and photovoltaic properties were investigated. The power conversion efficiency (PCE) of the BTZCZ-2-based solar cell devices was less than 0.5%, considerably lower than those of polymer-based devices with conventional device structures. However, inverted solar cell devices configured with glass/ITO/ZnO:PEIE/BTZCZ-2:PC71BM/MoO3/Ag showed a tremendously improved efficiency (PCE: 5.05%, Jsc: 9.95 mA/cm2, Voc: 0.89 V, and FF: 57.0%). We believe that this is attributed to high energy transfer and excellent film morphologies.


Sign in / Sign up

Export Citation Format

Share Document