ChemInform Abstract: AMINO ACIDS AND PEPTIDES. CLII. (1-β-MERCAPTOPROPIONIC ACID, 8-NORARGININE)VASOPRESSIN AND (1-β-MERCAPTOPROPIONIC ACID, 8-D-NORARGININE)VASOPRESSIN. TWO ANALOGS WITH STRONG BIOLOGICAL EFFECTS

1979 ◽  
Vol 10 (35) ◽  
Author(s):  
M. ZAORAL ◽  
F. BRTNIK ◽  
M. FLEGEL ◽  
T. BARTH ◽  
A. MACHOVA
1979 ◽  
Vol 44 (4) ◽  
pp. 1179-1186 ◽  
Author(s):  
Milan Zaoral ◽  
František Brtník ◽  
Martin Flegel ◽  
Tomislav Barth ◽  
Alena Machová

[1-β-Mercaptopropionic acid, 8-norarginine]vasopressin (L8, D8; I, II) was prepared by condensation of β-benzylthiopropionyl-tyrosyl-phenylalanyl-glutaminyl-asparaginyl-S-benzylcysteine with Nγ-benzyloxycarbonyl-α,γ-diaminobutyryl-glycine amide (L2, D2) by the azide or carbodiimide method, respectively, removal of the benzyloxycarbonyl residue, guanidination of γ-amino groups, removal of protecting groups, closing of the disulfide bridge, and electrophoretic purification. I has an almost 2 times higher antidiuretic effect than DDAVP and a 3 times higher pressor effect than AVP. II has 20-25% of the antidiuretic effect of DDAVP and 16 IU/mg of the pressor effect.


1981 ◽  
Vol 46 (9) ◽  
pp. 2136-2139 ◽  
Author(s):  
Ivo Bláha ◽  
Viktor Krchňák ◽  
Milan Zaoral

p-Toluenesulfonyl-S-benzylcysteinyl-tyrosyl-phenylalanyl-glutaminyl-asparaginyl-S-benzylcysteinyl-NG-p-toluenesulfanylarginyl-prolyl-glycineamide (I) and S-benzylcysteinyl-tyrosyl-isoleucyl-glutaminyl-asparaginyl-S-benzylcysteinyl-leucyl-prolyl-glycine amide (III) were prepared by solid phase synthesis. After removal of the protecting groups, closure of the disulfide ring, and purification by continuous free-flow electrophoresis [arginine7, proline8]vasopressin (II) and [leucine7, proline8]oxytocin (IV) were obtained. The antidiuretic effect of II is markedly higher than its pressor effect; IV possesses c. 6% of the uterotonic and c. 10% of the galactogogous effect of oxytocin.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 957
Author(s):  
Mamona Nazir ◽  
Muhammad Saleem ◽  
Muhammad Imran Tousif ◽  
Muhammad Aijaz Anwar ◽  
Frank Surup ◽  
...  

Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.


2004 ◽  
Vol 279 (19) ◽  
pp. 20435-20446 ◽  
Author(s):  
Mariía J. Caloca ◽  
José L. Zugaza ◽  
Miguel Vicente-Manzanares ◽  
Francisco Sánchez-Madrid ◽  
Xosé R. Bustelo

RasGRPs constitute a new group of diacylglycerol-dependent GDP/GTP exchange factors that activate Ras subfamily GTPases. Despite a common structure, Ras-GRPs diverge in their GTPase specificity, subcellular distribution, and downstream biological effects. The more divergent family member is RasGRP2, a Rap1-specific exchange factor with low affinity toward diacylglycerol. The regulation of RasGRP2 during signal transduction has remained elusive up to now. In this report, we show that the subcellular localization of Ras-GRP2 is highly dependent on actin dynamics. Thus, the induction of F-actin by cytoskeletal regulators such as Vav, Vav2, Dbl, and Rac1 leads to the shift of RasGRP2 from the cytosol to membrane ruffles and its co-localization with F-actin. Treatment of cells with cytoskeletal disrupting drugs abolishes this effect, leading to an abnormal localization of RasGRP2 in cytoplasmic clusters of actin. The use of Rac1 effector mutants indicates that the RasGRP2 translocation is linked exclusively to actin polymerization and is independent of other pathways such as p21-activated kinase JNK, or superoxide production. Biochemical experiments demonstrate that the translocation of RasGRP2 to membrane ruffles is mediated by the direct association of this protein with F-actin, a property contained within its 150 first amino acids. Finally, we show that the RasGRP2/F-actin interaction promotes the regionalized activation of Rap1 in juxtamembrane areas of the cell. These results reveal a novel function of the actin cytoskeleton in mediating the spatial activation of Ras subfamily GTPases through the selective recruitment of GDP/GTP exchange factors.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7401
Author(s):  
Mario Mardirossian ◽  
Marina Rubini ◽  
Mauro F. A. Adamo ◽  
Marco Scocchi ◽  
Michele Saviano ◽  
...  

The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.


Sign in / Sign up

Export Citation Format

Share Document