scholarly journals F-actin-dependent Translocation of the Rap1 GDP/GTP Exchange Factor RasGRP2

2004 ◽  
Vol 279 (19) ◽  
pp. 20435-20446 ◽  
Author(s):  
Mariía J. Caloca ◽  
José L. Zugaza ◽  
Miguel Vicente-Manzanares ◽  
Francisco Sánchez-Madrid ◽  
Xosé R. Bustelo

RasGRPs constitute a new group of diacylglycerol-dependent GDP/GTP exchange factors that activate Ras subfamily GTPases. Despite a common structure, Ras-GRPs diverge in their GTPase specificity, subcellular distribution, and downstream biological effects. The more divergent family member is RasGRP2, a Rap1-specific exchange factor with low affinity toward diacylglycerol. The regulation of RasGRP2 during signal transduction has remained elusive up to now. In this report, we show that the subcellular localization of Ras-GRP2 is highly dependent on actin dynamics. Thus, the induction of F-actin by cytoskeletal regulators such as Vav, Vav2, Dbl, and Rac1 leads to the shift of RasGRP2 from the cytosol to membrane ruffles and its co-localization with F-actin. Treatment of cells with cytoskeletal disrupting drugs abolishes this effect, leading to an abnormal localization of RasGRP2 in cytoplasmic clusters of actin. The use of Rac1 effector mutants indicates that the RasGRP2 translocation is linked exclusively to actin polymerization and is independent of other pathways such as p21-activated kinase JNK, or superoxide production. Biochemical experiments demonstrate that the translocation of RasGRP2 to membrane ruffles is mediated by the direct association of this protein with F-actin, a property contained within its 150 first amino acids. Finally, we show that the RasGRP2/F-actin interaction promotes the regionalized activation of Rap1 in juxtamembrane areas of the cell. These results reveal a novel function of the actin cytoskeleton in mediating the spatial activation of Ras subfamily GTPases through the selective recruitment of GDP/GTP exchange factors.

Author(s):  
Shamulailatpam Shreedarshanee Devi ◽  
Rashmi Yadav ◽  
Ranjana Arya

Cell migration is an essential cellular process that requires coordination of cytoskeletal dynamics, reorganization, and signal transduction. The actin cytoskeleton is central in maintaining the cellular structure as well as regulating the mechanisms of cell motility. Glycosylation, particularly sialylation of cell surface proteins like integrins, regulates signal transduction from the extracellular matrix to the cytoskeletal network. The activation of integrin by extracellular cues leads to recruitment of different focal adhesion complex proteins (Src, FAK, paxillin, etc.) and activates the signal including Rho GTPases for the regulation of actin assembly and disassembly. During cell migration, the assembly and disassembly of actin filament provides the essential force for the cell to move. Abnormal sialylation can lead to actin signaling dysfunction leading to aberrant cell migration, one of the main characteristics of cancer and myopathies. In the present study, we have reported altered F-actin to G-actin ratios in GNE mutated cells. These cells exhibit pathologically relevant mutations of GNE (UDP N-acetylneuraminic 2-epimerase/N-acetylmannosamine kinase), a key sialic acid biosynthetic enzyme. It was found that GNE neither affects the actin polymerization nor binds directly to actin. However, mutation in GNE resulted in increased binding of α-actinin to actin filaments. Further, through confocal imaging, GNE was found to be localized in focal adhesion complex along with paxillin. We further elucidated that mutation in GNE resulted in upregulation of RhoA protein and Cofilin activity is downregulated, which could be rescued with Rhosin and chlorogenic acid, respectively. Lastly, mutant in GNE reduced cell migration as implicated from wound healing assay. Our study indicates that molecules altering Cofilin function could significantly revert the cell migration defect due to GNE mutation in sialic acid-deficient cells. We propose cytoskeletal proteins to be alternate drug targets for disorders associated with GNE such as GNE myopathy.


1981 ◽  
Vol 46 (9) ◽  
pp. 2136-2139 ◽  
Author(s):  
Ivo Bláha ◽  
Viktor Krchňák ◽  
Milan Zaoral

p-Toluenesulfonyl-S-benzylcysteinyl-tyrosyl-phenylalanyl-glutaminyl-asparaginyl-S-benzylcysteinyl-NG-p-toluenesulfanylarginyl-prolyl-glycineamide (I) and S-benzylcysteinyl-tyrosyl-isoleucyl-glutaminyl-asparaginyl-S-benzylcysteinyl-leucyl-prolyl-glycine amide (III) were prepared by solid phase synthesis. After removal of the protecting groups, closure of the disulfide ring, and purification by continuous free-flow electrophoresis [arginine7, proline8]vasopressin (II) and [leucine7, proline8]oxytocin (IV) were obtained. The antidiuretic effect of II is markedly higher than its pressor effect; IV possesses c. 6% of the uterotonic and c. 10% of the galactogogous effect of oxytocin.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 957
Author(s):  
Mamona Nazir ◽  
Muhammad Saleem ◽  
Muhammad Imran Tousif ◽  
Muhammad Aijaz Anwar ◽  
Frank Surup ◽  
...  

Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guichun Wu ◽  
Yuqiang Zhang ◽  
Bo Wang ◽  
Kaihuai Li ◽  
Yuanlai Lou ◽  
...  

Abstract Background Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a devastating rice disease. The Xoo-rice interaction, wherein wide ranging host- and pathogen-derived proteins and genes wage molecular arms race, is a research hotspot. Hence, the identification of novel rice-induced Xoo virulence factors and characterization of their roles affecting rice global gene expression profiles will provide an integrated and better understanding of Xoo-rice interactions from the molecular perspective. Results Using comparative proteomics and an in vitro interaction system, we revealed that 5 protein spots from Xoo exhibited significantly different expression patterns (|fold change| > 1.5) at 3, 6, 12 h after susceptible rice leaf extract (RLX) treatment. MALDI-TOF MS analysis and pathogenicity tests showed that 4 host-induced proteins, including phosphohexose mutase, inositol monophosphatase, arginase and septum site-determining protein, affected Xoo virulence. Among them, mutants of two host-induced carbohydrate metabolism enzyme-encoding genes, ΔxanA and Δimp, elicited enhanced defense responses and nearly abolished Xoo virulence in rice. To decipher rice differentially expressed genes (DEGs) associated with xanA and imp, transcriptomic responses of ΔxanA-treated and Δimp-treated susceptible rice were compared to those in rice treated with PXO99A at 1 and 3 dpi. A total of 1521 and 227 DEGs were identified for PXO99A vs Δimp at 1 and 3 dpi, while for PXO99A vs ΔxanA, there were 131 and 106 DEGs, respectively. GO, KEGG and MapMan analyses revealed that the DEGs for PXO99A vs Δimp were mainly involved in photosynthesis, signal transduction, transcription, oxidation-reduction, hydrogen peroxide catabolism, ion transport, phenylpropanoid biosynthesis and metabolism of carbohydrates, lipids, amino acids, secondary metabolites, hormones, and nucleotides, while the DEGs from PXO99A vs ΔxanA were predominantly associated with photosynthesis, signal transduction, oxidation-reduction, phenylpropanoid biosynthesis, cytochrome P450 and metabolism of carbohydrates, lipids, amino acids, secondary metabolites and hormones. Although most pathways were associated with both the Δimp and ΔxanA treatments, the underlying genes were not the same. Conclusion Our study identified two novel host-induced virulence factors XanA and Imp in Xoo, and revealed their roles in global gene expression in susceptible rice. These results provide valuable insights into the molecular mechanisms of pathogen infection strategies and plant immunity.


2007 ◽  
Vol 18 (11) ◽  
pp. 4669-4680 ◽  
Author(s):  
Hiroshi Yamada ◽  
Emiko Ohashi ◽  
Tadashi Abe ◽  
Norihiro Kusumi ◽  
Shun-AI Li ◽  
...  

Amphiphysin 1 is involved in clathrin-mediated endocytosis. In this study, we demonstrate that amphiphysin 1 is essential for cellular phagocytosis and that it is critical for actin polymerization. Phagocytosis in Sertoli cells was induced by stimulating phosphatidylserine receptors. This stimulation led to the formation of actin-rich structures, including ruffles, phagocytic cups, and phagosomes, all of which showed an accumulation of amphiphysin 1. Knocking out amphiphysin 1 by RNA interference in the cells resulted in the reduction of ruffle formation, actin polymerization, and phagocytosis. Phagocytosis was also drastically decreased in amph 1 (−/−) Sertoli cells. In addition, phosphatidylinositol-4,5-bisphosphate–induced actin polymerization was decreased in the knockout testis cytosol. The addition of recombinant amphiphysin 1 to the cytosol restored the polymerization process. Ruffle formation in small interfering RNA-treated cells was recovered by the expression of constitutively active Rac1, suggesting that amphiphysin 1 functions upstream of the protein. These findings support that amphiphysin 1 is important in the regulation of actin dynamics and that it is required for phagocytosis.


2002 ◽  
Vol 156 (6) ◽  
pp. 1065-1076 ◽  
Author(s):  
Shoichiro Ono ◽  
Kanako Ono

Tropomyosin binds to actin filaments and is implicated in stabilization of actin cytoskeleton. We examined biochemical and cell biological properties of Caenorhabditis elegans tropomyosin (CeTM) and obtained evidence that CeTM is antagonistic to ADF/cofilin-dependent actin filament dynamics. We purified CeTM, actin, and UNC-60B (a muscle-specific ADF/cofilin isoform), all of which are derived from C. elegans, and showed that CeTM and UNC-60B bound to F-actin in a mutually exclusive manner. CeTM inhibited UNC-60B–induced actin depolymerization and enhancement of actin polymerization. Within isolated native thin filaments, actin and CeTM were detected as major components, whereas UNC-60B was present at a trace amount. Purified UNC-60B was unable to interact with the native thin filaments unless CeTM and other associated proteins were removed by high-salt extraction. Purified CeTM was sufficient to restore the resistance of the salt-extracted filaments from UNC-60B. In muscle cells, CeTM and UNC-60B were localized in different patterns. Suppression of CeTM by RNA interference resulted in disorganized actin filaments and paralyzed worms in wild-type background. However, in an ADF/cofilin mutant background, suppression of CeTM did not worsen actin organization and worm motility. These results suggest that tropomyosin is a physiological inhibitor of ADF/cofilin-dependent actin dynamics.


2014 ◽  
Author(s):  
Alvaro H. Crevenna ◽  
Marcelino Arciniega ◽  
Aurelie Dupont ◽  
Kaja Kowalska ◽  
Oliver Lange ◽  
...  

Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of the filament to polymerize and depolymerize at its ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. Here, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by proteins that bind to the lateral filament surface. We also show that the less dynamic end, called the pointed-end, has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of filament flexibility and Brownian dynamics simulations suggest that the observed kinetic diversity arises from structural alteration. Tuning filament kinetics by exploiting the natural malleability of the actin filament structure may be a ubiquitous mechanism to generate the rich variety of observed cellular actin dynamics.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yutao Huang ◽  
Zijian Jiang ◽  
Xiangyu Gao ◽  
Peng Luo ◽  
Xiaofan Jiang

Armadillo repeat-containing proteins (ARMCs) are widely distributed in eukaryotes and have important influences on cell adhesion, signal transduction, mitochondrial function regulation, tumorigenesis, and other processes. These proteins share a similar domain consisting of tandem repeats approximately 42 amino acids in length, and this domain constitutes a substantial platform for the binding between ARMCs and other proteins. An ARMC subfamily, including ARMC1∼10, ARMC12, and ARMCX1∼6, has received increasing attention. These proteins may have many terminal regions and play a critical role in various diseases. On the one hand, based on their similar central domain of tandem repeats, this ARMC subfamily may function similarly to other ARMCs. On the other hand, the unique domains on their terminals may cause these proteins to have different functions. Here, we focus on the ARMC subfamily (ARMC1∼10, ARMC12, and ARMCX1∼6), which is relatively conserved in vertebrates and highly conserved in mammals, particularly primates. We review the structures, biological functions, evolutions, interactions, and related diseases of the ARMC subfamily, which involve more than 30 diseases and 40 bypasses, including interactions and relationships between more than 100 proteins and signaling molecules. We look forward to obtaining a clearer understanding of the ARMC subfamily to facilitate further in-depth research and treatment of related diseases.


Sign in / Sign up

Export Citation Format

Share Document