antimicrobial drugs
Recently Published Documents


TOTAL DOCUMENTS

1308
(FIVE YEARS 498)

H-INDEX

58
(FIVE YEARS 9)

2022 ◽  
Vol 13 (2) ◽  
pp. 25-39
Author(s):  
Tiago de Oliveira Silva ◽  
Luis do Nascimento Ortega

There is a growing concern about the multi-resistant capabilities presented by microorganisms to antimicrobials. Society is harmed by the redirection of financial resources from other areas, also lacking the population, to purchase more potent antimicrobials and in larger quantities. This study describes the consumption of antimicrobial drugs and their impact generated through a systematic review, following the recommendations of the Prisma method. Searches were performed in four databases (Portal BVS, PubMed, Embase and Science Direct). A total of 196 articles were found, 11 of which were selected after applying the eligibility criteria. A prospective study showed that the difference in expenditures can reach $31.17 patients/day between prophylactics and those with nosocomial infections. Studies have shown that the increase in costs is related to the increase in the length of stay. Mortality and admission to the ICU also increased. Further studies with high levels of evidence are recommended.


Author(s):  
Juanjuan Ding ◽  
Bing Ma ◽  
Xupeng Wei ◽  
Ying Li

In this study, the aim was to investigate the discriminatory power of molecular diagnostics based on mNGS and traditional 16S ribosomal RNA PCR among Nocardia species. A total of fourteen clinical isolates from patients with positive Nocardia cultures and clinical evidence were included between January 2017 and June 2020 in HeNan Provincial People’s Hospital. DNA extraction and 16S rRNA PCR were performed on positive cultures, and pathogens were detected by mNGS in these same samples directly. Among the 14 Nocardia isolates, four species were identified, and N. cyriacigeorgica (8 cases) is the most common species. Twelve of the 14 Nocardia spp. isolates were identified by the two methods, while two strains of N. cyriacigeorgica were not identified by mNGS. All tested isolates showed susceptibility to trimethoprim-sulfamethoxazole (SXT), amikacin and linezolid. Apart from Nocardia species, other pathogens such as Acinetobacter baumannii, Klebsiella pneumonia, Aspergillus, Enterococcus faecalis, Human herpesvirus, etc., were detected from the same clinical samples by mNGS. However, these different pathogens were considered as colonization or contamination. We found that it is essential to accurately identify species for determining antibiotic sensitivity and, consequently, choosing antibiotic treatment. 16S rRNA PCR was useful for identification of nocardial infection among species, while this technique needs the clinicians to make the pre-considerations of nocardiosis. However, mNGS may be a putative tool for rapid and accurate detection and identification of Nocardia, beneficial for applications of antimicrobial drugs and timely adjustments of medication.


2022 ◽  
Vol 23 (2) ◽  
pp. 591
Author(s):  
Da-Gyum Lee ◽  
Hye-Jung Kim ◽  
Youngsun Lee ◽  
Jung-Hyun Kim ◽  
Yoohyun Hwang ◽  
...  

Mycobacterium abscessus (M. abscessus) causes chronic pulmonary infections. Its resistance to current antimicrobial drugs makes it the most difficult non-tuberculous mycobacteria (NTM) to treat with a treatment success rate of 45.6%. Therefore, there is a need for new therapeutic agents against M. abscessus. We identified 10-DEBC hydrochloride (10-DEBC), a selective AKT inhibitor that exhibits inhibitory activity against M. abscessus. To evaluate the potential of 10-DEBC as a treatment for lung disease caused by M. abscessus, we measured its effectiveness in vitro. We established the intracellular activity of 10-DEBC against M. abscessus in human macrophages and human embryonic cell-derived macrophages (iMACs). 10-DEBC significantly inhibited the growth of wild-type M. abscessus and clinical isolates and clarithromycin (CLR)-resistant M. abscessus strains. 10-DEBC’s drug efficacy did not have cytotoxicity in the infected macrophages. In addition, 10-DEBC operates under anaerobic conditions without replication as well as in the presence of biofilms. The alternative caseum binding assay is a unique tool for evaluating drug efficacy against slow and nonreplicating bacilli in their native caseum media. In the surrogate caseum, the mean undiluted fraction unbound (fu) for 10-DEBC is 5.696. The results of an in vitro study on the activity of M. abscessus suggest that 10-DEBC is a potential new drug for treating M. abscessus infections.


2021 ◽  
Vol 3 (4) ◽  
pp. 103-109
Author(s):  
Lucky Iserhienrhien ◽  
Okolie Paulinus ◽  
Etaware Mudiaga

The increase in synthetic drug resistance by pathogenic microbes has led to the development of plant-based antimicrobial drugs that are more reliable and non-lethal to human health at increased dosage. The antibacterial and antifungal potential of Geophila obvallata extracts were tested on clinical isolates (Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis,Streptococcus pyogenes, Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus) using standard techniques. The zones of inhibition were shown to increase with increasing concentrations of the extracts. Inhibition was higher in Gram positive bacteria (9.10 to 31.00mm in 40mg/mL concentration) than Gram negative bacteria (3.50 to 27.00mm in 40mg/mL concentration), while the fungal isolates had the least zones of inhibition (2.83 to 25.00mm in 40mg/ml concentration). The minimum inhibitory concentrations (MIC) were lowest in the methanol extract than aqueous extract. Simillarly, MIC for bacteria (Bacillus subtilis) and fungi (Aspergillus fumigatus) were 0.3 and 2.0mg/mL respectively. Methanol extract had higher antibacterial and antifungal effect than aqueous extract. Ciprofloxacin, used as control for bacteria had the highest inhibitory activity (33.67mm) when compared to that of the highest concentration of plant extracts administered. Also, ketoconazole gave the highest zones of inhibition (32.33mm) on the fungi isolates compared to those of the extracts. The performance of the methanol extract of 40mg/mL of Geophila obvallata in the inhibition of Bacillus subtilis was not significantly different from that of Ciprofloxacin. The findings in this study therefore validate the antimicrobial effect of Geophila obvallata leaf extracts as well as its possible application in medicine.  


Antibiotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
David Huang ◽  
Nicholas Pachuda ◽  
John Michael Sauer ◽  
Dessie Dobbins ◽  
Jonathan Steckbeck

Antimicrobial peptides (AMPs) have recently gained attention for their potential to treat diseases related to bacterial and viral infections, as many traditional antimicrobial drugs have reduced efficacy in treating these infections due to the increased prevalence of drug-resistant pathogens. PLG0206, an engineered cationic antibiotic peptide that is 24 residues long, has been designed to address some limitations of other natural AMPs, such as toxicity and limited activity due to pH and ion concentrations. Nonclinical studies have shown that PLG0206 is highly selective for targeting bacterial cells and is not toxic to human blood cells. Antibiofilm experiments demonstrated that PLG0206 is effective at reducing both biotic and abiotic biofilm burdens following direct biofilm contact. PLG0206 has rapid and broad-spectrum activity against both Gram-positive and Gram-negative bacteria that are implicated as etiologic agents in periprosthetic joint infections, including multidrug-resistant ESKAPE pathogens and colistin-resistant isolates. A recent first-in-human study demonstrated that PLG0206 is well tolerated and safe as an intravenous infusion in healthy volunteers. Studies are planned to determine the efficacy of PLG0206 in patients for the treatment of periprosthetic joint infections. This review summarizes the chemistry, pharmacology, and microbiology of PLG0206 and explores its current preclinical, clinical, and regulatory status.


Antibiotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 45
Author(s):  
Beatriz Fernández-Rubio ◽  
Paula del Valle-Moreno ◽  
Laura Herrera-Hidalgo ◽  
Alicia Gutiérrez-Valencia ◽  
Rafael Luque-Márquez ◽  
...  

Outpatient parenteral antimicrobial therapy (OPAThttp) programs have become an important healthcare tool around the world. Portable elastomeric infusion pumps are functional devices for ambulatory delivery of antimicrobial drugs, and their stability is an essential point to guarantee an appropriate infusion administration. We conducted a systematic review to provide a synthesis and a critical evaluation of the current evidence regarding antimicrobial stability in elastomeric pumps. Data sources were PubMed, EMBASE, and Web of Sciences. The review protocol was registered on the Center for Open Science, and it was carried out following the PRISMA guidelines. Studies were eligible if the aim was the evaluation of the physicochemical stability of an antimicrobial agent stored in an elastomeric device. Of the 613 papers identified, 33 met the inclusion criteria. The most studied group of antimicrobials was penicillins, followed by cephalosporins and carbapenems. In general, the stability results of the antimicrobials that have been studied in more than one article agree with each other, with the exception of ampicillin, flucloxacillin, and ceftazidime. The antibiotics that displayed a longer stability were glycopeptides and clindamycin. Regarding the stability of antifungals and antivirals, only caspofungin, voriconazole, and ganciclovir have been investigated. The information provided in this article should be considered in patient treatments within the OPAT setting. Further stability studies are needed to confirm the appropriate use of the antimicrobials included in this program to ensure optimal patient outcomes.


Author(s):  
Nataliya Demchenko ◽  
Zinaida Suvorova ◽  
Yuliia Fedchenkova ◽  
Tamara Shpychak ◽  
Oleh Shpychak ◽  
...  

The aim of this work is to develop methods of synthesis of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides and aryl-(4-R1-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines and to study their antimicrobial activity against strains of gram-positive and gram-negative bacteria as well as yeast fungi. Materials and methods. 1Н NMR spectra were recorded on Bruker 400 spectrometer operating at frequency of 400 MHz. Antimicrobial activity of the compounds synthesized was evaluated by their minimum inhibitory concentration (MIC) values. Results and discussion. The interaction of 3-arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines with substituted phenacyl bromides produced novel 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides. The latter when refluxed in 10 % solution of NaOH gave aryl-(4-R1-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines. The study of antimicrobial activity of the compounds obtained allowed to find derivatives which are active against С. albicans and S. aureus strains. Among the compounds tested 3-[(41-bromophenylamino)-methyl]-1-[2-(4-methoxyphenyl)-2-oxoethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromide 5cd appeared to be more active than the reference drug Cefixime and displayed close antimicrobial activity as the antibiotic Linezolid. Conclusions. It was found out that derivatives of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides display broad spectrum of antimicrobial activity and are able to inhibit growth of both bacteria and fungi. S. aureus and C. albicans turned out to be the most sensitive strains to the compounds tested, MIC was in the range of 6.2-25.0 mg/mL. Gram-negative strains of microorganisms were less sensitive to the compounds evaluated and 5fа was the most active derivative displaying antimicrobial activity at the concentration of 50.0 mg/mL. Antimicrobial activity of triazoloazepinium bromide derivatives was similar to that one of Linezolid and Fluconazole reference drugs and more pronounced than the activity of Cefixime. Hence, the data gathered evidence the feasibility of further study of the antimicrobial properties of the most active compounds in in vivo experiments aiming at assessment of the prospects for the creation of new effective and safe antimicrobial drugs based on them


2021 ◽  
Vol 6 (6-2) ◽  
pp. 37-50
Author(s):  
A. V. Nevezhina ◽  
T. V. Fadeeva

The spread of strains of microorganisms that are multidrug resistant to modern antimicrobial drugs is still an urgent problem in the treatment and prevention of infectious diseases and public health in general.Currently, the possibility of using metal nanopreparations in various fields of medicine is being actively studied. Nanoparticles of metals and metal oxides are promising antimicrobial agents and are attracting growing interest due to their effectiveness. Nanoscale copper metal particles have shown high antimicrobial activity againstvarious types of gram-positive and gram-negative bacteria, as well as fungi. Taking into account the potential of copper nanoparticles in antimicrobial therapy, we present an overview of the current state of research related to their antimicrobial properties, consideration of the mechanisms of action, key factors affecting antimicrobial activity, including the polymer matrix. The issues of toxicity and resistance to copper are considered. The advantage of copper nanoparticles over other metal nanoparticles is shown.The studies summarized in this review have shown the promise of copper nanoparticles in the creation of new antimicrobial drugs that can be used in the future to control, prevent, and treat various diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cui-Yi Liao ◽  
Balamuralikrishnan Balasubramanian ◽  
Jin-Ju Peng ◽  
Song-Ruo Tao ◽  
Wen-Chao Liu ◽  
...  

Antimicrobial resistance (AMR) has become a major concern worldwide. To evaluate the AMR of Escherichia coli in aquaculture farms of Zhanjiang, China, a total of 90 samples from the water, soil, and sediment of three aquaculture farms (farms I, II, and III) in Zhanjiang were collected, and 90 strains of E. coli were isolated for drug resistance analysis and AMR gene detection. The results indicated that the isolated 90 strains of E. coli have high resistance rates to penicillin, amoxicillin, ampicillin, tetracycline, compound sulfamethoxazole, sulfisoxazole, chloramphenicol, florfenicol, and rifampin (≥70%). Among these antimicrobial drugs, the resistance rate to rifampicin is as high as 100%. Among the isolated 90 strains of E. coli, all of them were resistant to more than two kinds of antimicrobial drugs, the number of strains resistant to nine kinds of drugs was the largest (19 strains), and the most resistant strain showed resistance to 16 kinds of antibacterial drugs. Regarding the AMR genes, among the three aquaculture farms, the most resistance genes were detected in farm II (28 species). The detection rate of blaTEM, blaCIT, blaNDM, floR, OptrA, cmlA, aphA1, Sul2, oqxA, and qnrS in 90 isolates of E. coli was high (≥50%). The detection rate of carbapenem-resistant genes, such as blaKPC, blaIMP, and cfr, was relatively lower ( ≤ 30%), and the detection rate of mcr2 was the lowest (0). At least four AMR genes were detected for each strain, and 15 AMR genes were detected at most. Among them, the number of strains that carried 10 AMR genes was the largest (15 strains). Finally, a correlation analysis found that the AMR genes including blaTEM, blaCIT, floR, OptrA, cmlA, aac(3)-II, Sul2, ereA, ermB, oqxB, qnrA, mcr1, and mcr2 had a high correlation rate with drug resistance (≥50%). To summarize, the 90 strains of E. coli isolated from water, surrounding soil, and sediment samples showed resistance to multi-antimicrobial drugs and carried various antimicrobial resistance genes. Thus, it is essential to strengthen the rational use of antimicrobial drugs, especially the amide alcohol drugs, and control the AMR in the aquaculture industry of Zhanjiang, China.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amarjitsing Rajput ◽  
Satish Mandlik ◽  
Varsha Pokharkar

Drug-resistant species of tuberculosis (TB), which spread faster than traditiona TB, is a severely infectious disease. The conventional drug therapy used in the management of tuberculosis has several challenges linked with adverse effects. Hence, nanotherapeutics served as an emerging technique to overcome problems associated with current treatment. Nanotherapeutics helps to overcome toxicity and poor solubility issues of several drugs used in the management of tuberculosis. Due to their diameter and surface chemistry, nanocarriers encapsulated with antimicrobial drugs are readily taken up by macrophages. Macrophages play a crucial role as they serve as target sites for active and passive targeting for nanocarriers. The surface of the nanocarriers is coated with ligand-specific receptors, which further enhances drug concentration locally and indicates the therapeutic potential of nanocarriers. This review highlights tuberculosis’s current facts, figures, challenges associated with conventional treatment, different nanocarrier-based systems, and its application in vaccine development.


Sign in / Sign up

Export Citation Format

Share Document