ChemInform Abstract: Characterization of the Binding, Kinetics, and Redox Stability of Vanadium(IV) and Vanadium(V) Protein Complexes in Serum.

1986 ◽  
Vol 17 (49) ◽  
Author(s):  
N. D. CHASTEEN ◽  
J. K. GRADY ◽  
C. E. HOLLOWAY
1986 ◽  
Vol 25 (16) ◽  
pp. 2754-2760 ◽  
Author(s):  
N. Dennis Chasteen ◽  
John K. Grady ◽  
Clive E. Holloway

2016 ◽  
Author(s):  
Vladimir V. Rogov ◽  
Alexandra Stolz ◽  
Arvind C. Ravicahandran ◽  
Alexander Law ◽  
Hironori Suzuki ◽  
...  

AbstractThrough the canonical LC3 interaction motif (LIR), [W/F/Y]-X1-X2-[I/L/V], protein complexes are recruited to autophagosomes to perform their functions as either autophagy adaptors or receptors. How these adaptors/receptors selectively interact with either LC3 or GABARAP families remains unclear. Herein, we determine the range of selectivity of 30 known core LIR motifs towards LC3s and GABARAPs. From these, we define a GABARAP Interaction Motif (GIM) sequence (W/F-V-X2-V) that the adaptor protein PLEKHM1 tightly conforms to. Using biophysical and structural approaches, we show that the PLEKHM1-LIR is indeed eleven-fold more specific for GABARAP than LC3B. Selective mutation of the X1 and X2 positions either completely abolished the interaction with all LC3 and GABARAPs or increased PLEKHM1-GIM selectivity 20-fold towards LC3B. Finally, we show that conversion of the canonical p62/SQSTM1-LIR into our newly defined GIM, by introducing two valine residues, enhances p62/SQSTM1 interaction with endogenous GABARAP over LC3B. The identification of a GABARAP-specific interaction motif will aid the identification and characterization of the continually expanding array of autophagy receptor and adaptor proteins and their in vivo functions.


2014 ◽  
Vol 14 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Yassel Gomez ◽  
Sebastien Gallien ◽  
Vivian Huerta ◽  
Jan Oostrum ◽  
Bruno Domon ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Qun Chen ◽  
Shweta Chhajed ◽  
Tong Zhang ◽  
Joseph M. Collins ◽  
Qiuying Pang ◽  
...  

AbstractDuring the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis. Although enzymes catalyzing each step of the reaction have been characterized, the regulatory mode is largely unknown. In this study, using three independent approaches, yeast two-hybrid (Y2H), coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC), we uncovered the presence of protein complexes consisting of isopropylmalate isomerase (IPMI) and isopropylmalate dehydrogenase (IPMDH). In addition, simultaneous decreases in both IPMI and IPMDH activities in a leuc:ipmdh1 double mutants resulted in aggregated changes of GLS profiles compared to either leuc or ipmdh1 single mutants. Although the biological importance of the formation of IPMI and IPMDH protein complexes has not been documented in any organisms, these complexes may represent a new regulatory mechanism of substrate channeling in GLS and/or leucine biosynthesis. Since genes encoding the two enzymes are widely distributed in eukaryotic and prokaryotic genomes, such complexes may have universal significance in the regulation of leucine biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document