ChemInform Abstract: Synthesis and Cerebrovascular Activity of (3-Pyridyloxy)alkanoic Acid Derivatives.

ChemInform ◽  
2010 ◽  
Vol 28 (29) ◽  
pp. no-no
Author(s):  
O. M. GLOZMAN ◽  
E. K. ORLOVA ◽  
L. D. SMIRNOV ◽  
T. S. GAN'SHINA ◽  
N. A. ROMANYCHEVA ◽  
...  
Polyhedron ◽  
1995 ◽  
Vol 14 (10) ◽  
pp. 1299-1306 ◽  
Author(s):  
Ki-Young Choi ◽  
Dong Won Kim ◽  
Choon Pyo Hong

2019 ◽  
Vol 5 (2) ◽  
pp. 71-77
Author(s):  
Galina A. Kim ◽  
Tamara S. Gan’shina ◽  
Elena V. Kurza ◽  
Ilya N. Kurdyumov ◽  
Denis V. Maslennikov ◽  
...  

Introduction: In cerebrovascular disorders, special attention is paid to a hypertensive cerebrovascular crisis, which combines a vascular injury of the brain and hypertension. The paper studies the cerebrovascular properties of the calcium channel blocker of S-Amlodipine nicotinate antihypertensive agent. Materials and methods: Tests were performed on 96 nonlinear male rats, measuring local blood flow in the cerebral cortex in 36 awake animals, using a laser Doppler flowmeter. Cerebral circulation was recorded in the animals when modeling ischemic and hemorrhagic brain injuries. Results and discussion: S-Amlodipine nicotinate (0.1 mg/kg i/v) shows a pronounced cerebrovascular activity in the models of ischemic and hemorrhagic injuries of the brain. In terms of the vasodilating effect in ischemic brain injury, the drug is comparable to mexidol, nimodipine, picamilon, but is superior to nimodipine and picamilon in terms of duration of action, and in the model of hemorrhagic stroke, S-Amlodipine nicotinate is superior to nimodipine and is comparable to picamilon and mexidol. The analysis of the mechanism of action of the agent revealed the participation of GABA A-receptors in the implementation of cerebrovascular properties of the agent. Conclusion: Significant cerebrovascular activity of S-Amlodipine nicotinate (0.1 mg/kg i/v) antihypertensive agent was revealed. The presence of GABAergic mechanism on cerebral blood flow in the agent action along with blockade of slow calcium channels ensures its high efficacy in treatment of both ischemic and hemorrhagic brain injuries.


2005 ◽  
Vol 80 (6) ◽  
pp. 1373-1378 ◽  
Author(s):  
C.N. Lau ◽  
D.R. Stewart ◽  
M. Bockrath ◽  
R. Stanley Williams
Keyword(s):  

2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Andrea Germer ◽  
Till Tiso ◽  
Conrad Müller ◽  
Beate Behrens ◽  
Christian Vosse ◽  
...  

ABSTRACT While rhamnolipids of the Pseudomonas aeruginosa type are commercially available, the natural diversity of rhamnolipids and their origin have barely been investigated. Here, we collected known and identified new rhlA genes encoding the acyltransferase responsible for the synthesis of the lipophilic rhamnolipid precursor 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA). Generally, all homologs were found in Betaproteobacteria and Gammaproteobacteria. A likely horizontal gene transfer event into Actinobacteria is the only identified exception. The phylogeny of the RhlA homologs from Pseudomonas and Burkholderia species is consistent with the organism phylogeny, and genes involved in rhamnolipid synthesis are located in operons. In contrast, RhlA homologs from the Enterobacterales do not follow the organisms’ phylogeny but form their own branch. Furthermore, in many Enterobacterales and Halomonas from the Oceanospirillales, an isolated rhlA homolog can be found in the genome. The RhlAs from Pseudomonas aeruginosa PA01, Pseudomonas fluorescens LMG 05825, Pantoea ananatis LMG 20103, Burkholderia plantarii PG1, Burkholderia ambifaria LMG 19182, Halomonas sp. strain R57-5, Dickeya dadantii Ech586, and Serratia plymuthica PRI-2C were expressed in Escherichia coli and tested for HAA production. Indeed, except for the Serratia RhlA, HAAs were produced with the engineered strains. A detailed analysis of the produced HAA congeners by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) highlights the congener specificity of the RhlA proteins. The congener length varies from 4 to 18 carbon atoms, with the main congeners consisting of different combinations of saturated or monounsaturated C10, C12, and C14 fatty acids. The results are discussed in the context of the phylogeny of this unusual enzymatic activity. IMPORTANCE The RhlA specificity explains the observed differences in 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA) congeners. Whole-cell catalysts can now be designed for the synthesis of different congener mixtures of HAAs and rhamnolipids, thereby contributing to the envisaged synthesis of designer HAAs.


Sign in / Sign up

Export Citation Format

Share Document