ChemInform Abstract: Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks

ChemInform ◽  
2010 ◽  
Vol 32 (27) ◽  
pp. no-no ◽  
Author(s):  
Mohamed Eddaoudi ◽  
David B. Moler ◽  
Hailian Li ◽  
Banglin Chen ◽  
Theresa M. Reineke ◽  
...  
2001 ◽  
Vol 34 (4) ◽  
pp. 319-330 ◽  
Author(s):  
Mohamed Eddaoudi ◽  
David B. Moler ◽  
Hailian Li ◽  
Banglin Chen ◽  
Theresa M. Reineke ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3512
Author(s):  
Reem Shomal ◽  
Babatunde Ogubadejo ◽  
Toyin Shittu ◽  
Eyas Mahmoud ◽  
Wei Du ◽  
...  

Biodiesel is a promising candidate for sustainable and renewable energy and extensive research is being conducted worldwide to optimize its production process. The employed catalyst is an important parameter in biodiesel production. Metal–organic frameworks (MOFs), which are a set of highly porous materials comprising coordinated bonds between metals and organic ligands, have recently been proposed as catalysts. MOFs exhibit high tunability, possess high crystallinity and surface area, and their order can vary from the atomic to the microscale level. However, their catalytic sites are confined inside their porous structure, limiting their accessibility for biodiesel production. Modification of MOF structure by immobilizing enzymes or ionic liquids (ILs) could be a solution to this challenge and can lead to better performance and provide catalytic systems with higher activities. This review compiles the recent advances in catalytic transesterification for biodiesel production using enzymes or ILs. The available literature clearly indicates that MOFs are the most suitable immobilization supports, leading to higher biodiesel production without affecting the catalytic activity while increasing the catalyst stability and reusability in several cycles.


2021 ◽  
Author(s):  
Xinyao Liu ◽  
Yunling Liu

ZMOFs are a subset of MOFs that exhibit zeolite-like topologies. Using molecular building block strategy, many ZMOFs with high stability and excellent performance can be rationally designed and synthesized using different secondary building units.


2014 ◽  
Vol 50 (14) ◽  
pp. 1678-1681 ◽  
Author(s):  
Jinjie Qian ◽  
Feilong Jiang ◽  
Linjie Zhang ◽  
Kongzhao Su ◽  
Jie Pan ◽  
...  

A highly porous metal–organic framework structurally consists of three topological kinds of 3-connected 1,3,5-benzenetricarboxylate ligands, Zn2(COO)4, Zn3O(COO)6 and Zn4O(COO)6 SBUs, featuring a new 3,3,3,4,4,6-c hexanodal topology.


2008 ◽  
Vol 130 (6) ◽  
pp. 1833-1835 ◽  
Author(s):  
Farid Nouar ◽  
Jarrod F. Eubank ◽  
Till Bousquet ◽  
Lukasz Wojtas ◽  
Michael J. Zaworotko ◽  
...  

ChemInform ◽  
2009 ◽  
Vol 40 (29) ◽  
Author(s):  
David J. Tranchemontagne ◽  
Jose L. Mendoza-Cortes ◽  
Michael O'Keeffe ◽  
Omar M. Yaghi

2015 ◽  
Vol 68 (1) ◽  
pp. 161 ◽  
Author(s):  
Zhuo-Wei Wang ◽  
Hui Zhao ◽  
Min Chen ◽  
Min Hu

Combination of a non-planar tripodal ligand 3,4-bi(4-carboxyphenyl)-benzoic acid (H3L) and Zn5O4-cluster secondary building units affords a highly connected three-dimensional metal–organic framework, {[Zn5(μ3-OH)3(μ2-OH)L2(H2O)2](H2O)2}n (1), which exhibits an unusual (3,4,9)-connected (42.5)(3.43.52)(32.45.511.613.73.82) topological net. The thermal stability and solid luminescence of the crystalline material have also been investigated.


2011 ◽  
Vol 115 (42) ◽  
pp. 20460-20465 ◽  
Author(s):  
Svyatoslav P. Gabuda ◽  
Svetlana G. Kozlova ◽  
Denis G. Samsonenko ◽  
Danil N. Dybtsev ◽  
Vladimir P. Fedin

Sign in / Sign up

Export Citation Format

Share Document