Synthesis and Evaluation of Analogues of S-Adenosyl-L-methionine, as Inhibitors of the E. coli Cyclopropane Fatty Acid Synthase.

ChemInform ◽  
2004 ◽  
Vol 35 (33) ◽  
Author(s):  
Christine Guerard ◽  
Maud Breard ◽  
Fabienne Courtois ◽  
Thierry Drujon ◽  
Olivier Ploux
2004 ◽  
Vol 14 (7) ◽  
pp. 1661-1664 ◽  
Author(s):  
Christine Guérard ◽  
Maud Bréard ◽  
Fabienne Courtois ◽  
Thierry Drujon ◽  
Olivier Ploux

2006 ◽  
Vol 1764 (8) ◽  
pp. 1381-1388 ◽  
Author(s):  
Dominique Guianvarc'h ◽  
Thierry Drujon ◽  
Thearina Ear Leang ◽  
Fabienne Courtois ◽  
Olivier Ploux

Structure ◽  
2018 ◽  
Vol 26 (9) ◽  
pp. 1251-1258.e3 ◽  
Author(s):  
Sanjay B. Hari ◽  
Robert A. Grant ◽  
Robert T. Sauer

2015 ◽  
Vol 11 (9) ◽  
pp. 2464-2472 ◽  
Author(s):  
Dan Coursolle ◽  
Jiazhang Lian ◽  
John Shanklin ◽  
Huimin Zhao

An orthogonal type I FAS was introduced into E. coli to increase the production of long chain alcohols and alkanes.


2000 ◽  
Vol 182 (2) ◽  
pp. 365-370 ◽  
Author(s):  
Keum-Hwa Choi ◽  
Richard J. Heath ◽  
Charles O. Rock

ABSTRACT A universal set of genes encodes the components of the dissociated, type II, fatty acid synthase system that is responsible for producing the multitude of fatty acid structures found in bacterial membranes. We examined the biochemical basis for the production of branched-chain fatty acids by gram-positive bacteria. Two genes that were predicted to encode homologs of the β-ketoacyl-acyl carrier protein synthase III of Escherichia coli (eFabH) were identified in theBacillus subtilis genome. Their protein products were expressed, purified, and biochemically characterized. Both B. subtilis FabH homologs, bFabH1 and bFabH2, carried out the initial condensation reaction of fatty acid biosynthesis with acetyl-coenzyme A (acetyl-CoA) as a primer, although they possessed lower specific activities than eFabH. bFabH1 and bFabH2 also utilized iso- and anteiso-branched-chain acyl-CoA primers as substrates. eFabH was not able to accept these CoA thioesters. Reconstitution of a complete round of fatty acid synthesis in vitro with purified E. coli proteins showed that eFabH was the only E. colienzyme incapable of using branched-chain substrates. Expression of either bFabH1 or bFabH2 in E. coli resulted in the appearance of a branched-chain 17-carbon fatty acid. Thus, the substrate specificity of FabH is an important determinant of branched-chain fatty acid production.


2001 ◽  
Vol 276 (50) ◽  
pp. 47029-47037 ◽  
Author(s):  
Merrill L. Schaeffer ◽  
Gautam Agnihotri ◽  
Craig Volker ◽  
Howard Kallender ◽  
Patrick J. Brennan ◽  
...  

Mycolic acids are vital components of theMycobacterium tuberculosiscell wall, and enzymes involved in their formation represent attractive targets for the discovery of novel anti-tuberculosis agents. Biosynthesis of the fatty acyl chains of mycolic acids involves two fatty acid synthetic systems, the multifunctional polypeptide fatty acid synthase I (FASI), which performsde novofatty acid synthesis, and the dissociated FASII system, which consists of monofunctional enzymes, and acyl carrier protein (ACP) and elongates FASI products to long chain mycolic acid precursors. In this study, we present the initial characterization of purified KasA and KasB, two β-ketoacyl-ACP synthase (KAS) enzymes of theM. tuberculosisFASII system. KasA and KasB were expressed inE. coliand purified by affinity chromatography. Both enzymes showed activity typical of bacterial KASs, condensing an acyl-ACP with malonyl-ACP. Consistent with the proposed role of FASII in mycolic acid synthesis, analysis of various acyl-ACP substrates indicated KasA and KasB had higher specificity for long chain acyl-ACPs containing at least 16 carbons. Activity of KasA and KasB increased with use ofM. tuberculosisAcpM, suggesting that structural differences between AcpM andE. coliACP may affect their recognition by the enzymes. Both enzymes were sensitive to KAS inhibitors cerulenin and thiolactomycin. These results represent important steps in characterizing KasA and KasB as targets for antimycobacterial drug discovery.


Sign in / Sign up

Export Citation Format

Share Document