Synthesis and Activity of N-Acyl Azacyclic Urea HIV-1 Protease Inhibitors with High Potency Against Multiple Drug Resistant Viral Strains.

ChemInform ◽  
2006 ◽  
Vol 37 (11) ◽  
Author(s):  
Chen Zhao ◽  
et al. et al.
2005 ◽  
Vol 15 (24) ◽  
pp. 5499-5503 ◽  
Author(s):  
Chen Zhao ◽  
Hing L. Sham ◽  
Minghua Sun ◽  
Vincent S. Stoll ◽  
Kent D. Stewart ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Ricardo Sohbie Diaz ◽  
Alexandre Grangeiro ◽  
Denize Lotufo Estevam ◽  
Juliana Galinskas ◽  
Danilo Dias ◽  
...  

2010 ◽  
Vol 84 (22) ◽  
pp. 11961-11969 ◽  
Author(s):  
Yasuhiro Koh ◽  
Masayuki Amano ◽  
Tomomi Towata ◽  
Matthew Danish ◽  
Sofiya Leshchenko-Yashchuk ◽  
...  

ABSTRACT We attempted to select HIV-1 variants resistant to darunavir (DRV), which potently inhibits the enzymatic activity and dimerization of protease and has a high genetic barrier to HIV-1 development of resistance to DRV. We conducted selection using a mixture of 8 highly multi-protease inhibitor (PI)-resistant, DRV-susceptible clinical HIV-1 variants (HIV-1MIX) containing 9 to 14 PI resistance-associated amino acid substitutions in protease. HIV-1MIX became highly resistant to DRV, with a 50% effective concentration (EC50) ∼333-fold greater than that against HIV-1NL4-3. HIV-1MIX at passage 51 (HIV-1MIXP51 ) replicated well in the presence of 5 μM DRV and contained 14 mutations. HIV-1MIXP51 was highly resistant to amprenavir, indinavir, nelfinavir, ritonavir, lopinavir, and atazanavir and moderately resistant to saquinavir and tipranavir. HIV-1MIXP51 had a resemblance with HIV-1C of the HIV-1MIX population, and selection using HIV-1C was also performed; however, its DRV resistance acquisition was substantially delayed. The H219Q and I223V substitutions in Gag, lacking in HIV-1CP51 , likely contributed to conferring a replication advantage on HIV-1MIXP51 by reducing intravirion cyclophilin A content. HIV-1MIXP51 apparently acquired the substitutions from another HIV-1 strain(s) of HIV-1MIX through possible homologous recombination. The present data suggest that the use of multiple drug-resistant HIV-1 isolates is of utility in selecting drug-resistant variants and that DRV would not easily permit HIV-1 to develop significant resistance; however, HIV-1 can develop high levels of DRV resistance when a variety of PI-resistant HIV-1 strains are generated, as seen in patients experiencing sequential PI failure, and ensuing homologous recombination takes place. HIV-1MIXP51 should be useful in elucidating the mechanisms of HIV-1 resistance to DRV and related agents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zachary D. Aron ◽  
Atousa Mehrani ◽  
Eric D. Hoffer ◽  
Kristie L. Connolly ◽  
Pooja Srinivas ◽  
...  

AbstractBacterial ribosome rescue pathways that remove ribosomes stalled on mRNAs during translation have been proposed as novel antibiotic targets because they are essential in bacteria and are not conserved in humans. We previously reported the discovery of a family of acylaminooxadiazoles that selectively inhibit trans-translation, the main ribosome rescue pathway in bacteria. Here, we report optimization of the pharmacokinetic and antibiotic properties of the acylaminooxadiazoles, producing MBX-4132, which clears multiple-drug resistant Neisseria gonorrhoeae infection in mice after a single oral dose. Single particle cryogenic-EM studies of non-stop ribosomes show that acylaminooxadiazoles bind to a unique site near the peptidyl-transfer center and significantly alter the conformation of ribosomal protein bL27, suggesting a novel mechanism for specific inhibition of trans-translation by these molecules. These results show that trans-translation is a viable therapeutic target and reveal a new conformation within the bacterial ribosome that may be critical for ribosome rescue pathways.


Sign in / Sign up

Export Citation Format

Share Document