ChemInform Abstract: Metal-Catalyzed Approaches to Amide Bond Formation

ChemInform ◽  
2011 ◽  
Vol 42 (48) ◽  
pp. no-no
Author(s):  
C. Liana Allen ◽  
Jonathan M. J. Williams
2018 ◽  
Vol 16 (1) ◽  
pp. 30-33
Author(s):  
Ashish Kumar ◽  
Yahya E. Jad ◽  
Ayman El-Faham ◽  
Beatriz G. de la Torre ◽  
Fernando Albericio

A new phosphonium based coupling reagent DEPO-B has been synthesized from 5- (hydroxyimino)-1,3-dimethylpyrimidine-2,4,6 (1H,3H,5H)-trione (Oxyma B) and diethyl chlorophosphate in presence of base. It is a solid material and the hydrolytic stability and solubility was evaluated for confirming its capability for usage in automated peptide synthesizer.


2014 ◽  
Vol 11 (4) ◽  
pp. 592-604 ◽  
Author(s):  
Natalia Lukasik ◽  
Ewa Wagner-Wysiecka

2017 ◽  
Vol 15 (30) ◽  
pp. 6367-6374 ◽  
Author(s):  
Song-Lin Zhang ◽  
Hai-Xing Wan ◽  
Zhu-Qin Deng

A detailed computational study is presented on the reaction mechanism of ynamide-mediated condensation of carboxylic acids with amines to produce amides, which elucidates the reactivity pattern of the coupling reagent ynamide and discloses crucial bifunctional catalytic effects of the carboxylic acid substrate during aminolysis.


Author(s):  
Truong Thanh Tung ◽  
John Nielsen

Herein, we report the green, expedite, and practically simple protocol for direct coupling of carboxylate salts and ammonium salts under ACN/H2O conditions at room temperature without the addition of tertiary...


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2413 ◽  
Author(s):  
Cheng Chen ◽  
Yang Miao ◽  
Kimmy De Winter ◽  
Hua-Jing Wang ◽  
Patrick Demeyere ◽  
...  

Transition-metal-catalyzed amide-bond formation from alcohols and amines is an atom-economic and eco-friendly route. Herein, we identified a highly active in situ N-heterocyclic carbene (NHC)/ruthenium (Ru) catalytic system for this amide synthesis. Various substrates, including sterically hindered ones, could be directly transformed into the corresponding amides with the catalyst loading as low as 0.25 mol.%. In this system, we replaced the p-cymene ligand of the Ru source with a relatively labile cyclooctadiene (cod) ligand so as to more efficiently obtain the corresponding poly-carbene Ru species. Expectedly, the weaker cod ligand could be more easily substituted with multiple mono-NHC ligands. Further high-resolution mass spectrometry (HRMS) analyses revealed that two tetra-carbene complexes were probably generated from the in situ catalytic system.


2017 ◽  
Vol 82 (17) ◽  
pp. 9087-9096 ◽  
Author(s):  
Yuan-Ye Jiang ◽  
Ling Zhu ◽  
Yujie Liang ◽  
Xiaoping Man ◽  
Siwei Bi

Sign in / Sign up

Export Citation Format

Share Document