ChemInform Abstract: Solid-State NMR as a Spectroscopic Tool for Characterizing Phosphane-Borane Frustrated Lewis Pairs

ChemInform ◽  
2014 ◽  
Vol 45 (39) ◽  
pp. no-no
Author(s):  
Thomas Wiegand ◽  
Hellmut Eckert ◽  
Stefan Grimme
Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1400 ◽  
Author(s):  
Robert Knitsch ◽  
Melanie Brinkkötter ◽  
Thomas Wiegand ◽  
Gerald Kehr ◽  
Gerhard Erker ◽  
...  

Modern solid-state NMR techniques offer a wide range of opportunities for the structural characterization of frustrated Lewis pairs (FLPs), their aggregates, and the products of cooperative addition reactions at their two Lewis centers. This information is extremely valuable for materials that elude structural characterization by X-ray diffraction because of their nanocrystalline or amorphous character, (pseudo-)polymorphism, or other types of disordering phenomena inherent in the solid state. Aside from simple chemical shift measurements using single-pulse or cross-polarization/magic-angle spinning NMR detection techniques, the availability of advanced multidimensional and double-resonance NMR methods greatly deepened the informational content of these experiments. In particular, methods quantifying the magnetic dipole–dipole interaction strengths and indirect spin–spin interactions prove useful for the measurement of intermolecular association, connectivity, assessment of FLP–ligand distributions, and the stereochemistry of adducts. The present review illustrates several important solid-state NMR methods with some insightful applications to open questions in FLP chemistry, with a particular focus on supramolecular associates.


ChemPhysChem ◽  
2019 ◽  
Vol 20 (14) ◽  
pp. 1837-1849 ◽  
Author(s):  
Robert Knitsch ◽  
Thomas Özgün ◽  
Guo‐Qiang Chen ◽  
Gerald Kehr ◽  
Gerhard Erker ◽  
...  

Author(s):  
Lei Liu ◽  
Jan Gerit Brandenburg ◽  
Stefan Grimme

Recently, the concept of small molecule activation by frustrated Lewis pairs (FLPs) has been expanded to the solid state showing a variety of interesting reactivities. Therefore, there is a need to establish a computational protocol to investigate such systems theoretically. In the present study, we selected several FLPs and applied multiple levels of theory, ranging from a semi-empirical tight-binding Hamiltonian to dispersion corrected hybrid density functionals. Their performance is benchmarked for the computation of crystal geometries, thermostatistical contributions, and reaction energies. We show that the computationally efficient HF-3c method gives accurate crystal structures and is numerically stable and sufficiently fast for routine applications. This method also gives reliable values for the thermostatistical contributions to Gibbs free energies. The meta-generalized gradient approximated TPSS-D3 evaluated in a projector augmented plane wave basis set is able to produce sufficiently accurate reaction electronic energies. The established protocol is intended to support experimental studies and to predict new reactions in the emerging field of solid-state FLPs. This article is part of the themed issue ‘Frustrated Lewis pair chemistry’.


Sign in / Sign up

Export Citation Format

Share Document