ChemInform Abstract: Solid-State Polycondensation (SSP) as a Method to Obtain High Molecular Weight Polymers. Part I. Parameters Influencing the SSP Process

ChemInform ◽  
2015 ◽  
Vol 46 (34) ◽  
pp. no-no
Author(s):  
Izabela Steinborn-Rogulska ◽  
Gabriel Rokicki
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher L. Anderson ◽  
He Li ◽  
Christopher G. Jones ◽  
Simon J. Teat ◽  
Nicholas S. Settineri ◽  
...  

AbstractTopochemical polymerization reactions hold the promise of producing ultra-high molecular weight crystalline polymers. However, the totality of topochemical polymerization reactions has failed to produce ultra-high molecular weight polymers that are both soluble and display variable functionality, which are restrained by the crystal-packing and reactivity requirements on their respective monomers in the solid state. Herein, we demonstrate the topochemical polymerization reaction of a family of para-azaquinodimethane compounds that undergo facile visible light and thermally initiated polymerization in the solid state, allowing for the first determination of a topochemical polymer crystal structure resolved via the cryoelectron microscopy technique of microcrystal electron diffraction. The topochemical polymerization reaction also displays excellent functional group tolerance, accommodating both solubilizing side chains and reactive groups that allow for post-polymerization functionalization. The thus-produced soluble ultra-high molecular weight polymers display superior capacitive energy storage properties. This study overcomes several synthetic and characterization challenges amongst topochemical polymerization reactions, representing a critical step toward their broader application.


1945 ◽  
Vol 18 (4) ◽  
pp. 874-876
Author(s):  
Richard F. Robey ◽  
Herbert K. Wiese

Abstract Peroxides are found in synthetic rubbers either as the result of attack by oxygen, usually from the air, or as a residue from polymerization operations employing peroxide catalysts. Because of possible detrimental effects of active oxygen on the properties of the rubber, a method of quantitative determination is needed. The concentration of peroxides in substances of lower molecular weight may be determined with ferrous thiocyanate reagent, either titrimetrically as recommended by Yule and Wilson or colorimetrically as by Young, Vogt, and Nieuwland. Unfortunately, many highly polymeric substances are not soluble in the acetone and methanol solutions employed in these procedures. This is also the case with hydrocarbon monomers, such as butadiene, containing appreciable concentrations of soluble high molecular weight polymers. Bolland, Sundralingam, Sutton and Tristram recommended benzene as a solvent for natural rubber samples and the reagent made up in methanol. However, most synthetic rubbers are not readily soluble even in this combination. The following procedure employs the ferrous thiocyanate reagent in combination with a solvent capable of maintaining considerable concentrations of synthetic rubber in solution. The solvent comprises essentially 20 per cent ethanol in chloroform.


Sign in / Sign up

Export Citation Format

Share Document