CO-SEISMIC GRAVITATIONAL POTENTIAL ENERGY CHANGE AND ITS TECTONIC IMPLICATIONS: A CASE STUDY IN TIBETAN PLATEAU AREA

2017 ◽  
Vol 60 (3) ◽  
pp. 313-320 ◽  
Author(s):  
ZHOU Jiang-Cun ◽  
SUN He-Ping ◽  
XU Jian-Qiao ◽  
CUI Xiao-Ming ◽  
CHEN Xiao-Dong
Geology ◽  
2006 ◽  
Vol 34 (5) ◽  
pp. 321 ◽  
Author(s):  
Attreyee Ghosh ◽  
William E. Holt ◽  
Lucy M. Flesch ◽  
A. John Haines

2021 ◽  
Vol 57 (1) ◽  
pp. 015012
Author(s):  
Unofre B Pili ◽  
Renante R Violanda

Abstract The video of a free-falling object was analysed in Tracker in order to extract the position and time data. On the basis of these data, the velocity, gravitational potential energy, kinetic energy, and the work done by gravity were obtained. These led to a rather simultaneous validation of the conservation law of energy and the work–energy theorem. The superimposed plots of the kinetic energy, gravitational potential energy, and the total energy as respective functions of time and position demonstrate energy conservation quite well. The same results were observed from the plots of the potential energy against the kinetic energy. On the other hand, the work–energy theorem has emerged from the plot of the total work-done against the change in kinetic energy. Because of the accessibility of the setup, the current work is seen as suitable for a home-based activity, during these times of the pandemic in particular in which online learning has remained to be the format in some countries. With the guidance of a teacher, online or face-to-face, students in their junior or senior high school—as well as for those who are enrolled in basic physics in college—will be able to benefit from this work.


1999 ◽  
Vol 86 (1) ◽  
pp. 383-390 ◽  
Author(s):  
Timothy M. Griffin ◽  
Neil A. Tolani ◽  
Rodger Kram

Walking humans conserve mechanical and, presumably, metabolic energy with an inverted pendulum-like exchange of gravitational potential energy and horizontal kinetic energy. Walking in simulated reduced gravity involves a relatively high metabolic cost, suggesting that the inverted-pendulum mechanism is disrupted because of a mismatch of potential and kinetic energy. We tested this hypothesis by measuring the fluctuations and exchange of mechanical energy of the center of mass at different combinations of velocity and simulated reduced gravity. Subjects walked with smaller fluctuations in horizontal velocity in lower gravity, such that the ratio of horizontal kinetic to gravitational potential energy fluctuations remained constant over a fourfold change in gravity. The amount of exchange, or percent recovery, at 1.00 m/s was not significantly different at 1.00, 0.75, and 0.50 G (average 64.4%), although it decreased to 48% at 0.25 G. As a result, the amount of work performed on the center of mass does not explain the relatively high metabolic cost of walking in simulated reduced gravity.


Sign in / Sign up

Export Citation Format

Share Document