Tracker-assisted modelling: simultaneous validation of the conservation law of energy and the work-energy theorem

2021 ◽  
Vol 57 (1) ◽  
pp. 015012
Author(s):  
Unofre B Pili ◽  
Renante R Violanda

Abstract The video of a free-falling object was analysed in Tracker in order to extract the position and time data. On the basis of these data, the velocity, gravitational potential energy, kinetic energy, and the work done by gravity were obtained. These led to a rather simultaneous validation of the conservation law of energy and the work–energy theorem. The superimposed plots of the kinetic energy, gravitational potential energy, and the total energy as respective functions of time and position demonstrate energy conservation quite well. The same results were observed from the plots of the potential energy against the kinetic energy. On the other hand, the work–energy theorem has emerged from the plot of the total work-done against the change in kinetic energy. Because of the accessibility of the setup, the current work is seen as suitable for a home-based activity, during these times of the pandemic in particular in which online learning has remained to be the format in some countries. With the guidance of a teacher, online or face-to-face, students in their junior or senior high school—as well as for those who are enrolled in basic physics in college—will be able to benefit from this work.

1999 ◽  
Vol 86 (1) ◽  
pp. 383-390 ◽  
Author(s):  
Timothy M. Griffin ◽  
Neil A. Tolani ◽  
Rodger Kram

Walking humans conserve mechanical and, presumably, metabolic energy with an inverted pendulum-like exchange of gravitational potential energy and horizontal kinetic energy. Walking in simulated reduced gravity involves a relatively high metabolic cost, suggesting that the inverted-pendulum mechanism is disrupted because of a mismatch of potential and kinetic energy. We tested this hypothesis by measuring the fluctuations and exchange of mechanical energy of the center of mass at different combinations of velocity and simulated reduced gravity. Subjects walked with smaller fluctuations in horizontal velocity in lower gravity, such that the ratio of horizontal kinetic to gravitational potential energy fluctuations remained constant over a fourfold change in gravity. The amount of exchange, or percent recovery, at 1.00 m/s was not significantly different at 1.00, 0.75, and 0.50 G (average 64.4%), although it decreased to 48% at 0.25 G. As a result, the amount of work performed on the center of mass does not explain the relatively high metabolic cost of walking in simulated reduced gravity.


2012 ◽  
Vol 8 (S292) ◽  
pp. 47-47
Author(s):  
Huixian Li ◽  
Di Li ◽  
Rendong Nan

AbstractWe collected 27 outflows from the literature and found 8 new ones in the FCRAO CO maps of the Taurus molecular cloud. The total kinetic energy of the 35 outflows is found to be about 3% of the gravitational potential energy from the whole cloud. The feedback effect due to the outflows is minor in Taurus.


1996 ◽  
Vol 24 (4) ◽  
pp. 235-242 ◽  
Author(s):  
R. S. Mullisen

A simple, friction-bearing calorimeter that yields Joule's constant is described in this paper. The apparatus is easily constructed at minimal expense and may be used as a laboratory experiment. Although the design is very simple, the experimental procedure and data reduction analysis account for gravitational potential energy, elastic potential energy, translational and rotational kinetic energy, and heat loss. The result is a Joule's constant value accurate within 3%.


1997 ◽  
Vol 200 (16) ◽  
pp. 2177-2188 ◽  
Author(s):  
C T Farley ◽  
T C Ko

Lizards bend their trunks laterally with each step of locomotion and, as a result, their locomotion appears to be fundamentally different from mammalian locomotion. The goal of the present study was to determine whether lizards use the same two basic gaits as other legged animals or whether they use a mechanically unique gait due to lateral trunk bending. Force platform and kinematic measurements revealed that two species of lizards, Coleonyx variegatus and Eumeces skiltonianus, used two basic gaits similar to mammalian walking and trotting gaits. In both gaits, the kinetic energy fluctuations due to lateral movements of the center of mass were less than 5% of the total external mechanical energy fluctuations. In the walking gait, both species vaulted over their stance limbs like inverted pendulums. The fluctuations in kinetic energy and gravitational potential energy of the center of mass were approximately 180 degrees out of phase. The lizards conserved as much as 51% of the external mechanical energy required for locomotion by the inverted pendulum mechanism. Both species also used a bouncing gait, similar to mammalian trotting, in which the fluctuations in kinetic energy and gravitational potential energy of the center of mass were nearly exactly in phase. The mass-specific external mechanical work required to travel 1 m (1.5 J kg-1) was similar to that for other legged animals. Thus, in spite of marked lateral bending of the trunk, the mechanics of lizard locomotion is similar to the mechanics of locomotion in other legged animals.


2006 ◽  
Vol 36 (7) ◽  
pp. 1420-1429 ◽  
Author(s):  
Rui Xin Huang ◽  
Xingze Jin

Abstract The gravitational potential energy balance of the thermal circulation in a simple rectangular model basin is diagnosed from numerical experiments based on a mass-conserving oceanic general circulation model. The vertical mixing coefficient is assumed to be a given constant. The model ocean is heated/cooled from the upper surface or bottom, and the equation of state is linear or nonlinear. Although the circulation patterns obtained from these cases look rather similar, the energetics of the circulation may be very different. For cases of differential heating from the bottom with a nonlinear equation of state, the circulation is driven by mechanical energy generated by heating from the bottom. On the other hand, circulation for three other cases is driven by external mechanical energy, which is implicitly provided by tidal dissipation and wind stress. The major balance of gravitational energy in this model ocean is between the source of energy due to vertical mixing and the conversion from kinetic energy at low latitudes and the sink of energy due to convection adjustment and conversion to kinetic energy at high latitudes.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb232645
Author(s):  
Giovanni A. Cavagna ◽  
Mario A. Legramandi

ABSTRACTIt is known that mechanical work to sustain walking is reduced, owing to a transfer of gravitational potential energy into kinetic energy, as in a pendulum. The factors affecting this transfer are unclear. In particular, the phase relationship between potential and kinetic energy curves of the center of mass is not known. In this study, we measured this relationship. The normalized time intervals α, between the maximum kinetic energy in the sagittal plane (Ek) and the minimum gravitational potential energy (Ep), and β, between the minimum Ek and the maximum Ep, were measured during walking at various speeds (0.5–2.5 m s−1). In our group of subjects, α=β at 1.6 m s−1, indicating that, at this speed, the time difference between Ep and Ek extremes is the same at the top and the bottom of the trajectory of the center of mass. It turns out that, at the same speed, the work done to lift the center of mass equals the work to accelerate it forwards, the Ep–Ek energy transfer approaches a maximum and the mass-specific external work per unit distance approaches a minimum.


Author(s):  
Charles D. Bailyn

This chapter explores the ways that accretion onto a black hole produces energy and radiation. As material falls into a gravitational potential well, energy is transformed from gravitational potential energy into other forms of energy, so that total energy is conserved. Observing such accretion energy is one of the primary ways that astrophysicists pinpoint the locations of potential black holes. The spectrum and intensity of this radiation is governed by the geometry of the gas flow, the mass infall rate, and the mass of the accretor. The simplest flow geometry is that of a stationary object accreting mass equally from all directions. Such spherically symmetric accretion is referred to as Bondi-Hoyle accretion. However, accretion flows onto black holes are not thought to be spherically symmetric—the infall is much more frequently in the form of a flattened disk.


Sign in / Sign up

Export Citation Format

Share Document