scholarly journals Walking in simulated reduced gravity: mechanical energy fluctuations and exchange

1999 ◽  
Vol 86 (1) ◽  
pp. 383-390 ◽  
Author(s):  
Timothy M. Griffin ◽  
Neil A. Tolani ◽  
Rodger Kram

Walking humans conserve mechanical and, presumably, metabolic energy with an inverted pendulum-like exchange of gravitational potential energy and horizontal kinetic energy. Walking in simulated reduced gravity involves a relatively high metabolic cost, suggesting that the inverted-pendulum mechanism is disrupted because of a mismatch of potential and kinetic energy. We tested this hypothesis by measuring the fluctuations and exchange of mechanical energy of the center of mass at different combinations of velocity and simulated reduced gravity. Subjects walked with smaller fluctuations in horizontal velocity in lower gravity, such that the ratio of horizontal kinetic to gravitational potential energy fluctuations remained constant over a fourfold change in gravity. The amount of exchange, or percent recovery, at 1.00 m/s was not significantly different at 1.00, 0.75, and 0.50 G (average 64.4%), although it decreased to 48% at 0.25 G. As a result, the amount of work performed on the center of mass does not explain the relatively high metabolic cost of walking in simulated reduced gravity.

1997 ◽  
Vol 200 (16) ◽  
pp. 2177-2188 ◽  
Author(s):  
C T Farley ◽  
T C Ko

Lizards bend their trunks laterally with each step of locomotion and, as a result, their locomotion appears to be fundamentally different from mammalian locomotion. The goal of the present study was to determine whether lizards use the same two basic gaits as other legged animals or whether they use a mechanically unique gait due to lateral trunk bending. Force platform and kinematic measurements revealed that two species of lizards, Coleonyx variegatus and Eumeces skiltonianus, used two basic gaits similar to mammalian walking and trotting gaits. In both gaits, the kinetic energy fluctuations due to lateral movements of the center of mass were less than 5% of the total external mechanical energy fluctuations. In the walking gait, both species vaulted over their stance limbs like inverted pendulums. The fluctuations in kinetic energy and gravitational potential energy of the center of mass were approximately 180 degrees out of phase. The lizards conserved as much as 51% of the external mechanical energy required for locomotion by the inverted pendulum mechanism. Both species also used a bouncing gait, similar to mammalian trotting, in which the fluctuations in kinetic energy and gravitational potential energy of the center of mass were nearly exactly in phase. The mass-specific external mechanical work required to travel 1 m (1.5 J kg-1) was similar to that for other legged animals. Thus, in spite of marked lateral bending of the trunk, the mechanics of lizard locomotion is similar to the mechanics of locomotion in other legged animals.


2006 ◽  
Vol 36 (7) ◽  
pp. 1420-1429 ◽  
Author(s):  
Rui Xin Huang ◽  
Xingze Jin

Abstract The gravitational potential energy balance of the thermal circulation in a simple rectangular model basin is diagnosed from numerical experiments based on a mass-conserving oceanic general circulation model. The vertical mixing coefficient is assumed to be a given constant. The model ocean is heated/cooled from the upper surface or bottom, and the equation of state is linear or nonlinear. Although the circulation patterns obtained from these cases look rather similar, the energetics of the circulation may be very different. For cases of differential heating from the bottom with a nonlinear equation of state, the circulation is driven by mechanical energy generated by heating from the bottom. On the other hand, circulation for three other cases is driven by external mechanical energy, which is implicitly provided by tidal dissipation and wind stress. The major balance of gravitational energy in this model ocean is between the source of energy due to vertical mixing and the conversion from kinetic energy at low latitudes and the sink of energy due to convection adjustment and conversion to kinetic energy at high latitudes.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb232645
Author(s):  
Giovanni A. Cavagna ◽  
Mario A. Legramandi

ABSTRACTIt is known that mechanical work to sustain walking is reduced, owing to a transfer of gravitational potential energy into kinetic energy, as in a pendulum. The factors affecting this transfer are unclear. In particular, the phase relationship between potential and kinetic energy curves of the center of mass is not known. In this study, we measured this relationship. The normalized time intervals α, between the maximum kinetic energy in the sagittal plane (Ek) and the minimum gravitational potential energy (Ep), and β, between the minimum Ek and the maximum Ep, were measured during walking at various speeds (0.5–2.5 m s−1). In our group of subjects, α=β at 1.6 m s−1, indicating that, at this speed, the time difference between Ep and Ek extremes is the same at the top and the bottom of the trajectory of the center of mass. It turns out that, at the same speed, the work done to lift the center of mass equals the work to accelerate it forwards, the Ep–Ek energy transfer approaches a maximum and the mass-specific external work per unit distance approaches a minimum.


2021 ◽  
Vol 57 (1) ◽  
pp. 015012
Author(s):  
Unofre B Pili ◽  
Renante R Violanda

Abstract The video of a free-falling object was analysed in Tracker in order to extract the position and time data. On the basis of these data, the velocity, gravitational potential energy, kinetic energy, and the work done by gravity were obtained. These led to a rather simultaneous validation of the conservation law of energy and the work–energy theorem. The superimposed plots of the kinetic energy, gravitational potential energy, and the total energy as respective functions of time and position demonstrate energy conservation quite well. The same results were observed from the plots of the potential energy against the kinetic energy. On the other hand, the work–energy theorem has emerged from the plot of the total work-done against the change in kinetic energy. Because of the accessibility of the setup, the current work is seen as suitable for a home-based activity, during these times of the pandemic in particular in which online learning has remained to be the format in some countries. With the guidance of a teacher, online or face-to-face, students in their junior or senior high school—as well as for those who are enrolled in basic physics in college—will be able to benefit from this work.


2012 ◽  
Vol 8 (S292) ◽  
pp. 47-47
Author(s):  
Huixian Li ◽  
Di Li ◽  
Rendong Nan

AbstractWe collected 27 outflows from the literature and found 8 new ones in the FCRAO CO maps of the Taurus molecular cloud. The total kinetic energy of the 35 outflows is found to be about 3% of the gravitational potential energy from the whole cloud. The feedback effect due to the outflows is minor in Taurus.


1991 ◽  
Vol 156 (1) ◽  
pp. 215-231 ◽  
Author(s):  
R. J. Full ◽  
M. S. Tu

To examine the effects of variation in body form on the mechanics of terrestrial locomotion, we used a miniature force platform to measure the ground reaction forces of the smallest and, relative to its mass, one of the fastest invertebrates ever studied, the American cockroach Periplaneta americana (mass = 0.83 g). From 0.44-1.0 ms-1, P. americana used an alternating tripod stepping pattern. Fluctuations in gravitational potential energy and horizontal kinetic energy of the center of mass were nearly in phase, characteristic of a running or bouncing gait. Aerial phases were observed as vertical ground reaction force approached zero at speeds above 1 ms-1. At the highest speeds (1.0-1.5 ms-1 or 50 body lengths per second), P. americana switched to quadrupedal and bipedal running. Stride frequency approached the wing beat frequencies used during flight (27 Hz). High speeds were attained by increasing stride length, whereas stride frequency showed little increase with speed. The mechanical power used to accelerate the center of mass increased curvilinearly with speed. The mass-specific mechanical energy used to move the center of mass a given distance was similar to that measured for animals five orders of magnitude larger in mass, but was only one-hundredth of the metabolic cost.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
J R Usherwood

Synopsis Animal legs are diverse, complex, and perform many roles. One defining requirement of legs is to facilitate terrestrial travel with some degree of economy. This could, theoretically, be achieved without loss of mechanical energy if the body could take a continuous horizontal path supported by vertical forces only—effectively a wheel-like translation, and a condition closely approximated by walking tortoises. If this is a potential strategy for zero mechanical work cost among quadrupeds, how might the structure, posture, and diversity of both sprawled and parasagittal legs be interpreted? In order to approach this question, various linkages described during the industrial revolution are considered. Watt’s linkage provides an analogue for sprawled vertebrates that uses diagonal limb support and shows how vertical-axis joints could enable approximately straight-line horizontal translation while demanding minimal mechanical power. An additional vertical-axis joint per leg results in the wall-mounted pull-out monitor arm and would enable translation with zero mechanical work due to weight support, without tipping or toppling. This is consistent with force profiles observed in tortoises. The Peaucellier linkage demonstrates that parasagittal limbs with lateral-axis joints could also achieve the zero-work strategy. Suitably tuned four-bar linkages indicate this is feasibly approximated for flexed, biologically realistic limbs. Where “walking” gaits typically show out of phase fluctuation in center of mass kinetic and gravitational potential energy, and running, hopping or trotting gaits are characterized by in-phase energy fluctuations, the zero limb-work strategy approximated by tortoises would show zero fluctuations in kinetic or potential energy. This highlights that some gaits, perhaps particularly those of animals with sprawled or crouched limbs, do not fit current kinetic gait definitions; an additional gait paradigm, the “zero limb-work strategy” is proposed.


1996 ◽  
Vol 24 (4) ◽  
pp. 235-242 ◽  
Author(s):  
R. S. Mullisen

A simple, friction-bearing calorimeter that yields Joule's constant is described in this paper. The apparatus is easily constructed at minimal expense and may be used as a laboratory experiment. Although the design is very simple, the experimental procedure and data reduction analysis account for gravitational potential energy, elastic potential energy, translational and rotational kinetic energy, and heat loss. The result is a Joule's constant value accurate within 3%.


2007 ◽  
Vol 102 (6) ◽  
pp. 2266-2273 ◽  
Author(s):  
Justus D. Ortega ◽  
Claire T. Farley

Elderly adults consume more metabolic energy during walking than young adults. Our study tested the hypothesis that elderly adults consume more metabolic energy during walking than young adults because they perform more individual limb work on the center of mass. Thus we compared how much individual limb work young and elderly adults performed on the center of mass during walking. We measured metabolic rate and ground reaction force while 10 elderly and 10 young subjects walked at 5 speeds between 0.7 and 1.8 m/s. Compared with young subjects, elderly subjects consumed an average of 20% more metabolic energy ( P = 0.010), whereas they performed an average of 10% less individual limb work during walking over the range of speeds ( P = 0.028). During the single-support phase, elderly and young subjects both conserved ∼80% of the center of mass mechanical energy by inverted pendulum energy exchange and performed a similar amount of individual limb work ( P = 0.473). However, during double support, elderly subjects performed an average of 17% less individual limb work than young subjects ( P = 0.007) because their forward speed fluctuated less ( P = 0.006). We conclude that the greater metabolic cost of walking in elderly adults cannot be explained by a difference in individual limb work. Future studies should examine whether a greater metabolic cost of stabilization, reduced muscle efficiency, greater antagonist cocontraction, and/or a greater cost of generating muscle force cause the elevated metabolic cost of walking in elderly adults.


2013 ◽  
Vol 779-780 ◽  
pp. 1094-1097
Author(s):  
Guo Chang Qiao ◽  
Deng Bin Qiao

This design is an implementation method based on the "automatic obstacle avoidance car", which gravitational potential energy can be converted into mechanical energy and driving as the motivation .This car can automatically avoid obstacles on the track settings in advance. The greatest feature of the car is during its operation, accelerating first then maintaining a constant speed, so that less energy consumption are required. Besides that, the walking track is closing to the sinusoidal curve. The convenient manufacture has a simple structure as well as high transmit efficiency.


Sign in / Sign up

Export Citation Format

Share Document